Normal, dust-obscured galaxies in the epoch of reionization – Nature


  • 1.

    Madau, P. & Dickinson, M. Cosmic star-formation historical past. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  Google Scholar 

  • 2.

    Bouwens, R. J. et al. UV luminosity features at redshifts z ~ Four to z ~ 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).

    Article  Google Scholar 

  • 3.

    Ono, Y. et al. Great optically luminous dropout analysis utilizing subaru HSC (GOLDRUSH). I. UV luminosity features at z ~ 4–7 derived with the half-million dropouts on the 100 deg2 sky. Publ. Astron. Soc. Jpn. 70, S10 (2018).

    CAS  Article  Google Scholar 

  • 4.

    Watson, D. et al. A dusty, regular galaxy in the epoch of reionization. Nature 519, 327–330 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Hashimoto, T. et al. Big three dragons: a z = 7.15 Lyman-break galaxy detected in [O iii] 88 μm, [C ii] 158 μm, and dirt continuum with ALMA. Publ. Astron. Soc. Jpn. 71, 71 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Tamura, Y. et al. Detection of the far-infrared [O iii] and dirt emission in a galaxy at redshift 8.312: early metallic enrichment in the coronary heart of the reionization period. Astrophys. J. 874, 27 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Bakx, T. J. L. C. et al. ALMA uncovers the [C ii] emission and heat mud continuum in a z = 8.31 Lyman break galaxy. Mon. Not. R. Astron. Soc. 493, 4294–4307 (2020).

    CAS  Article  Google Scholar 

  • 8.

    Riechers, D. A. et al. A dust-obscured large most-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Strandet, M. L. et al. ISM properties of a large dusty star-forming galaxy found at z ~ 7. Astrophys. J. Lett. 842, L15 (2017).

    Article  Google Scholar 

  • 10.

    Marrone, D. P. et al. Galaxy progress in a large halo in the first billion years of cosmic historical past. Nature 553, 51–54 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Dudzevičiūtė, U. et al. An ALMA survey of the SCUBA-2 CLS UDS area: bodily properties of 707 sub-millimetre galaxies. Mon. Not. R. Astron. Soc. 494, 3828–3860 (2020).

    Article  Google Scholar 

  • 12.

    Riechers, D. A. et al. COLDz: a excessive house density of large dusty starburst galaxies ~ 1 billion years after the large bang. Astrophys. J. 895, 81 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Decarli, R. et al. Rapidly star-forming galaxies adjoining to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Mazzucchelli, C. et al. Spectral power distributions of companion galaxies to z ~ 6 quasars. Astrophys. J. 881, 163 (2019).

    CAS  Article  Google Scholar 

  • 15.

    Wang, T. et al. A dominant inhabitants of optically invisible large galaxies in the early Universe. Nature 572, 211–214 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Williams, C. C. et al. Discovery of a darkish, large, ALMA-solely galaxy at z ~ 5–6 in a tiny Three mm survey. Astrophys. J. 884, 154 (2019).

    CAS  Article  Google Scholar 

  • 17.

    Bouwens, R. J. et al. Reionization period shiny emission line survey: choice and characterization of luminous interstellar medium reservoirs in the z>6.5 Universe. Preprint at https://arxiv.org/abs/2106.13719 (2021).

  • 18.

    Bowler, R. A. A. et al. Obscured star formation in shiny z = 7 Lyman-break galaxies. Mon. Not. R. Astron. Soc. 481, 1631–1644 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Schreiber, C. et al. The Herschel view of the dominant mode of galaxy progress from z = Four to the current day. Astron. Astrophys. 575, A74 (2015).

    Article  Google Scholar 

  • 20.

    Swinbank, A. M. et al. An ALMA survey of sub-millimetre galaxies in the Extended Chandra Deep Field South: the far-infrared properties of SMGs. Mon. Not. R. Astron. Soc. 438, 1267–1287 (2014).

    CAS  Article  Google Scholar 

  • 21.

    Walter, F. et al. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field. Nature 486, 233–236 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Casey, C. M. et al. The brightest galaxies in the darkish ages: galaxies’ mud continuum emission throughout the reionization period. Astrophys. J. 862, 77 (2018).

    Article  Google Scholar 

  • 23.

    Zavala, J. A. et al. The evolution of the IR luminosity operate and dust-obscured star formation over the previous 13 billion years. Astrophys. J. 909, 165 (2021).

    Article  Google Scholar 

  • 24.

    McCracken, H. J. et al. UltraVISTA: a brand new extremely-deep close to-infrared survey in COSMOS. Astron. Astrophys. 544, A156 (2012).

    Article  Google Scholar 

  • 25.

    Jarvis, M. J. et al. The VISTA Deep Extragalactic Observations (VIDEO) survey. Mon. Not. R. Astron. Soc. 428, 1281–1295 (2013).

    Article  Google Scholar 

  • 26.

    Erben, T. et al. CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-color knowledge from 37 sq. deg. CFHTLS-vast observations. Astron. Astrophys. 493, 1197–1222 (2009).

    Article  Google Scholar 

  • 27.

    Aihara, H. et al. First knowledge launch of the Hyper Suprime-Cam Subaru Strategic Program. Publ. Astron. Soc. Jpn. 70, S8 (2018).

    MathSciNet  CAS  Google Scholar 

  • 28.

    Bowler, R. A. A. et al. A scarcity of evolution in the very shiny finish of the galaxy luminosity operate from z = Eight to 10. Mon. Not. R. Astron. Soc. 493, 2059–2084 (2020).

    CAS  Article  Google Scholar 

  • 29.

    Stefanon, M. et al. The brightest z 8 galaxies over the COSMOS UltraVISTA area. Astrophys. J. 883, 99 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Bowler, R. A. A., Dunlop, J. S., McLure, R. J. & McLeod, D. J. Unveiling the nature of shiny z = 7 galaxies with the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 466, 3612–3635 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Schaerer, D. et al. The ALPINE-ALMA [C ii] survey. Little to no evolution in the [C ii]-SFR relation over the final 13 Gyr. Astron. Astrophys. 643, A3 (2020).

    CAS  Article  Google Scholar 

  • 32.

    De Looze, I. et al. The applicability of far-infrared nice-construction strains as star formation price tracers over vast ranges of metallicities and galaxy varieties. Astron. Astrophys. 568, A62 (2014).

    Article  Google Scholar 

  • 33.

    Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of large quiescent galaxies with BAGPIPES: proof for a number of quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    CAS  Article  Google Scholar 

  • 34.

    Bruzual, G. & Charlot, S. Stellar inhabitants synthesis at the decision of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  Google Scholar 

  • 35.

    Kroupa, P. & Boily, C. M. On the mass operate of star clusters. Mon. Not. R. Astron. Soc. 336, 1188–1194 (2002).

    Article  Google Scholar 

  • 36.

    Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar inhabitants synthesis fashions. Astrophys. J. 840, 44 (2017).

    Article  Google Scholar 

  • 37.

    Ferland, G. J. et al. The 2017 launch Cloudy. Rev. Mexic. Astron. Astrof. 53, 385–438 (2017).

    CAS  ADS  Google Scholar 

  • 38.

    Calzetti, D. et al. The mud content material and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  Google Scholar 

  • 39.

    Charlot, S. & Fall, S. M. A easy mannequin for the absorption of starlight by mud in galaxies. Astrophys. J. 539, 718–731 (2000).

    CAS  Article  Google Scholar 

  • 40.

    Draine, B. T. & Li, A. Infrared emission from interstellar mud. IV. The silicate-graphite-PAH mannequin in the post-Spitzer period. Astrophys. J. 657, 810–837 (2007).

    CAS  Article  Google Scholar 

  • 41.

    Wang, R. et al. Star formation and fuel kinematics of quasar host galaxies at z ~ 6: new insights from ALMA. Astrophys. J. 773, 44 (2013).

    Article  Google Scholar 

  • 42.

    Capak, P. L. et al. Galaxies at redshifts 5 to six with systematically low mud content material and excessive [C ii] emission. Nature 522, 455–458 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Dessauges-Zavadsky, M. et al. The ALPINE-ALMA [C ii] survey. Molecular fuel finances in the early Universe as traced by [C ii]. Astron. Astrophys. 643, A5 (2020).

    CAS  Article  Google Scholar 

  • 44.

    Casey, C. M. Far-infrared spectral power distribution becoming for galaxies close to and much. Mon. Not. R. Astron. Soc. 425, 3094–3103 (2012).

    Article  Google Scholar 

  • 45.

    Schreiber, C. et al. Dust temperature and mid-to-whole infrared colour distributions for star-forming galaxies at 0<z<4. Astron. Astrophys. 609, A30 (2018).

    Article  Google Scholar 

  • 46.

    Faisst, A. L. et al. ALMA characterises the mud temperature of z ~ 5.5 star-forming galaxies. Mon. Not. R. Astron. Soc. 498, 4192–4204 (2020).

    CAS  Article  Google Scholar 

  • 47.

    da Cunha, E. et al. On the impact of the cosmic microwave background in excessive-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    Article  Google Scholar 

  • 48.

    Laporte, N. et al. Dust in the reionization period: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. Lett. 837, L21 (2017).

    Article  Google Scholar 

  • 49.

    Behrens, C. et al. Dusty galaxies in the epoch of reionization: simulations. Mon. Not. R. Astron. Soc. 477, 552–565 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Liang, L. et al. On the mud temperatures of excessive-redshift galaxies. Mon. Not. R. Astron. Soc. 489, 1397–1422 (2019).

    CAS  Article  Google Scholar 

  • 51.

    Sommovigo, L. et al. Warm mud in high-z galaxies: origin and implications. Mon. Not. R. Astron. Soc. 497, 956–968 (2020).

    CAS  Article  Google Scholar 

  • 52.

    De Vis, P. et al. A scientific metallicity examine of DustPedia galaxies reveals evolution in the mud-to-metallic ratios. Astron. Astrophys. 623, A5 (2019).

    Article  Google Scholar 

  • 53.

    Mancini, M. et al. Interpreting the evolution of galaxy colors from z = Eight to five. Mon. Not. R. Astron. Soc. 462, 3130–3145 (2016).

    Article  Google Scholar 

  • 54.

    Graziani, L. et al. The meeting of dusty galaxies at z ≥ 4: statistical properties. Mon. Not. R. Astron. Soc. 494, 1071–1088 (2020).

    CAS  Article  Google Scholar 

  • 55.

    Gruppioni, C. et al. The Herschel PEP/HerMES luminosity operate – I. Probing the evolution of PACS chosen galaxies to z = 4. Mon. Not. R. Astron. Soc. 432, 23–52 (2013).

    Article  Google Scholar 

  • 56.

    Carilli, C. L. & Walter, F. Cool fuel in excessive-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

    CAS  Article  Google Scholar 

  • 57.

    Peebles, P. J. E. The Large-Scale Structure of the Universe (Princeton Univ. Press, 1980).

  • 58.

    Barone-Nugent, R. L. et al. Measurement of galaxy clustering at z ~ 7.2 and the evolution of galaxy bias from 3.8 ~ z ~ 8 in the XDF, GOODS-S, and GOODS-N. Astrophys. J. 793, 17 (2014).

    Article  Google Scholar 

  • 59.

    Adelberger, Okay. L. et al. The spatial clustering of star-forming galaxies at redshifts 1.4 < z < 3.5. Astrophys. J. 619, 697–713 (2005).

    CAS  Article  Google Scholar 

  • 60.

    Qiu, Y. et al. Dependence of galaxy clustering on UV luminosity and stellar mass at z ~ 4–7. Mon. Not. R. Astron. Soc. 481, 4885–4894 (2018).

    CAS  Article  Google Scholar 

  • 61.

    Bhowmick, A. Okay. et al. Cosmic variance of z > 7 galaxies: prediction from BLUETIDES. Mon. Not. R. Astron. Soc. 496, 754–766 (2020).

    CAS  Article  Google Scholar 

  • 62.

    Uzgil, B. D. et al. The ALMA spectroscopic survey in the HUDF: a seek for [C ii] emitters at 6 ≤ z ≤ 8. Astrophys. J. 912, 67 (2021).

    CAS  Article  Google Scholar 

  • 63.

    Whitaker, Okay. E. et al. The fixed common relationship between dust-obscured star formation and stellar mass from z = Zero to z = 2.5. Astrophys. J. 850, 208 (2017).

    Article  Google Scholar 

  • 64.

    Fudamoto, Y. et al. The ALPINE-ALMA [Cii] survey. Dust attenuation properties and obscured star formation at z ~ 4.4–5.8. Astron. Astrophys. 643, A4 (2020).

    CAS  Article  Google Scholar 

  • 65.

    Béthermin, M. et al. Evolution of the mud emission of large galaxies as much as z = Four and constraints on their dominant mode of star formation. Astron. Astrophys. 573, A113 (2015).

    Article  Google Scholar 

  • 66.

    Scoville, N. et al. COSMOS: Hubble Space Telescope observations. Astrophys. J. Suppl. 172, 38–45 (2007).

    CAS  Article  Google Scholar 



  • Source link