Modelling human blastocysts by reprogramming fibroblasts into iBlastoids


  • 1.

    Rossant, J. & Tam, P. P. L. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20, 18–28 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Google Scholar 

  • 4.

    Fu, J., Warmflash, A. & Lutolf, M. P. Stem-cell-based embryo models for fundamental research and translation. Nat. Mater. 20, 132–144 (2021).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 5.

    Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 6.

    Sozen, B. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20, 979–989 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Zhang, S. et al. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nat. Commun. 10, 496 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Sozen, B. et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev. Cell 51, 698–712 (2019).

    CAS  Article  Google Scholar 

  • 10.

    Li, R. et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell 179, 687–702 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Liu, X. et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 586, 101–107 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    CAS  Article  Google Scholar 

  • 16.

    Qin, H. et al. YAP induces human naive pluripotency. Cell Rep. 14, 2301–2312 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Liu, L. et al. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat. Commun. 10, 364 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Durruthy-Durruthy, J. et al. Spatiotemporal reconstruction of the human blastocyst by single-cell gene-expression analysis informs induction of naive pluripotency. Dev. Cell 38, 100–115 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Niakan, K. K. & Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Roode, M. et al. Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 361, 358–363 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Kovacic, B., Vlaisavljevic, V., Reljic, M. & Cizek-Sajko, M. Developmental capacity of different morphological types of day 5 human morulae and blastocysts. Reprod. Biomed. Online 8, 687–694 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Posfai, E. et al. Evaluating totipotency using criteria of increasing stringency. Nat. Cell Biol. 23, 49–60 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Tyser, R. C. V., Mahammadov, E., Nakanoh, S. & Vallier, L. A spatially resolved single cell atlas of human gastrulation. Preprint at https://doi.org/10.1101/2020.07.21.213512 (2020).

  • 27.

    Chen, D. et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 29, 4568–4582 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    West, R. C. et al. Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. Proc. Natl Acad. Sci. USA 116, 22635–22644 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283 (2011).

    Article  Google Scholar 

  • 30.

    Hyun, I., Munsie, M., Pera, M. F., Rivron, N. C. & Rossant, J. Toward guidelines for research on human embryo models formed from stem cells. Stem Cell Rep. 14, 169–174 (2020).

    CAS  Article  Google Scholar 

  • 31.

    Warnock—report of the committee of inquiry into human fertilisation and embryology. Ir. Nurs. News 5, 7–8 (1985).

  • 32.

    Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Tan, J. P., Liu, X. & Polo, J. M. Generation of human blastocyst-like structures by somatic cell reprogramming. Protoc. Exch. https://doi.org/10.21203/rs.3.pex-1347/v1 (2021).

  • 34.

    Liu, X. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods 14, 1055–1062 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Paynter, J. M., Chen, J., Liu, X. & Nefzger, C. M. Propagation and maintenance of mouse embryonic stem cells. Methods Mol. Biol. 1940, 33–45 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Rostovskaya, M., Stirparo, G. G. & Smith, A. Capacitation of human naïve pluripotent stem cells for multi-lineage differentiation. Development 146, dev172916 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Boroviak, T. et al. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 145, dev167833 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Lim, H. Y. G. et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585, 404–409 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Gerri, C. et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447 (2020).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 41.

    Aberkane, A. et al. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system. Mol. Hum. Reprod. 24, 375–387 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Article  Google Scholar 

  • 45.

    Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 20, 273 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Wickham, H. et al. dplyr: a grammar of data manipulation. R version 1.0.5 https://CRAN.R-project.org/package=dplyr (2021).

  • 47.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 50.

    Kolde, R. & Vilo, J. GOsummaries: an R package for visual functional annotation of experimental data. F1000Res. 4, 574 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54–61 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Linneberg-Agerholm, M. et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 146, dev180620 (2019).

    CAS  Article  Google Scholar 



  • Source link