Mechanical forcing of the North American monsoon by orography – Nature

  • 1.

    Douglas, M. W., Maddox, R. A., Howard, Ok. & Reyes, S. The Mexican monsoon. J. Clim. 6, 1665–1677 (1993).

    ADS  Google Scholar 

  • 2.

    Adams, D. Ok. & Comrie, A. C. The North American monsoon. Bull. Am. Meteorol. Soc. 78, 2197–2213 (1997).

    ADS  Google Scholar 

  • 3.

    Tang, M. & Reiter, E. R. Plateau monsoons of the Northern Hemisphere: a comparability between North America and Tibet. Mon. Weather Rev. 112, 617–637 (1984).

    ADS  Google Scholar 

  • 4.

    Vera, C. et al. Toward a unified view of the American monsoon techniques. J. Clim. 19, 4977–5000 (2006).

    ADS  Google Scholar 

  • 5.

    Mechoso, C. R., Robertson, A. W., Ropelewski, C. F. & Grimm, A. M. in The Global Monsoon System: Research and Forecast (eds Chang, C.-P. et al.) Tropical Meteorology Research Programme Report No. 70; 197–206 (No. 1266, WMO/TD, 2005);

  • 6.

    Bryson, R. A. & Lowry, W. P. Synoptic climatology of the Arizona summer season precipitation singularity. Bull. Amer. Meteor. Soc. 36, 329–339 (1955).

    ADS  Google Scholar 

  • 7.

    Krishnamurti, T. N. Tropical east-west circulations throughout the northern summer season. J. Atmos. Sci. 28, 1342–1347 (1971).

    ADS  Google Scholar 

  • 8.

    Broccoli, A. J. & Manabe, S. The results of orography on midlatitude Northern Hemisphere dry climates. J. Clim. 5, 1181–1201 (1992).

    ADS  Google Scholar 

  • 9.

    Stensrud, D., Gall, R., Mullen, S. & Howard, Ok. Model climatology of the Mexican monsoon. J. Clim. 8, 1775–1794 (1995).

    ADS  Google Scholar 

  • 10.

    Schmitz, J. T. & Mullen, S. L. Water vapor transport related to the summertime North American monsoon as depicted by ECMWF analyses. J. Clim. 9, 1621–1634 (1996).

    ADS  Google Scholar 

  • 11.

    Johnson, R. H., Ciesielski, P. E., McNoldy, B. D., Rogers, P. J. & Taft, R. Ok. Multiscale variability of the move throughout the North American Monsoon Experiment. J. Clim. 20, 1628–1648 (2007).

    ADS  Google Scholar 

  • 12.

    Berbery, E. H. Mesoscale moisture evaluation of the North American monsoon. J. Clim. 14, 121–137 (2001).

    ADS  Google Scholar 

  • 13.

    Nesbitt, S., Gochis, D. & Lang, T. The diurnal cycle of clouds and precipitation alongside the Sierra Madre Occidental noticed throughout NAME-2004: implications for heat season precipitation estimation in advanced terrain. J. Hydrometeorol. 9, 728–743 (2008).

    ADS  Google Scholar 

  • 14.

    Ting, M. & Wang, H. The position of the North American topography on the upkeep of the Great Plains summer season low-stage jet. J. Atmos. Sci. 63, 1056–1068 (2006).

    ADS  Google Scholar 

  • 15.

    Wexler, H. A boundary layer interpretation of the low-stage jet. Tellus 13, 368–378 (1961).

    ADS  Google Scholar 

  • 16.

    Barlow, M., Nigam, S. & Berbery, E. Evolution of the North American Monsoon System. J. Clim. 11, 2238–2257 (1997).

    ADS  Google Scholar 

  • 17.

    Collier, J. C. & Zhang, G. J. Effects of elevated horizontal decision on simulation of the North American monsoon in the NCAR CAM3: an analysis based mostly on floor, satellite tv for pc, and reanalysis knowledge. J. Clim. 20, 1843–1861 (2007).

    ADS  Google Scholar 

  • 18.

    Pascale, S. et al. The influence of horizontal decision on North American monsoon Gulf of California moisture surges in a collection of coupled international local weather fashions. J. Clim. 29, 7911–7936 (2016).

    ADS  Google Scholar 

  • 19.

    Varuolo-Clarke, A. M., Reed, Ok. A. & Medeiros, B. Characterizing the North American monsoon in the Community Atmosphere Model: sensitivity to decision and topography. J. Climate 32, 8355–8372 (2019).

    ADS  Google Scholar 

  • 20.

    Hu, S. & Boos, W. The physics of orographic elevated heating in radiative–convective equilibrium. J. Atmos. Sci. 74, 2949–2965 (2017).

    ADS  Google Scholar 

  • 21.

    Gill, A. E. Some easy options for warmth-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    ADS  Google Scholar 

  • 22.

    Rodwell, M. J. & Hoskins, B. J. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc. 122, 1385–1404 (1996).

    ADS  Google Scholar 

  • 23.

    Simpson, I. R., Seager, R., Shaw, T. A. & Ting, M. Mediterranean summer season local weather and the significance of Middle East topography. J. Clim. 28, 1977–1996 (2015).

    ADS  Google Scholar 

  • 24.

    Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

    ADS  Google Scholar 

  • 25.

    Rodwell, M. J. & Hoskins, B. J. Subtropical anticyclones and summer season monsoons. J. Clim. 14, 3192–3211 (2001).

    ADS  Google Scholar 

  • 26.

    Emanuel, Ok. A. Atmospheric Convection (Oxford Univ. Press, 1994).

  • 27.

    Sobel, A. H. & Bretherton, C. S. Modeling tropical precipitation in a single column. J. Clim. 13, 4378–4392 (2000).

    ADS  Google Scholar 

  • 28.

    Privé, N. C. & Plumb, R. A. Monsoon dynamics with interactive forcing. Part II: influence of eddies and uneven geometries. J. Atmos. Sci. 64, 1431–1442 (2007).

    ADS  Google Scholar 

  • 29.

    Nie, J., Boos, W. R. & Kuang, Z. Observational analysis of a convective quasi-equilibrium view of monsoons. J. Clim. 23, 4416–4428 (2010).

    ADS  Google Scholar 

  • 30.

    Higgins, R. W., Chen, Y. & Douglas, A. V. Interannual variability of the North American heat season precipitation regime. J. Clim. 12, 653–680 (1999).

    ADS  Google Scholar 

  • 31.

    Hersbach, H. et al. The ERA5 international reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS  Google Scholar 

  • 32.

    European Centre for Medium-Range Weather Forecasts ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid) (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 30 April 2020);

  • 33.

    Hersbach, H. et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present (Copernicus Climate Change Service Climate Data Store, accessed 25 February 2021);

  • 34.

    Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    PubMed  ADS  Google Scholar 

  • 35.

    Global Modeling and Assimilation Office MERRA-2 tavgM_2d_slv_Nx: second,Monthly imply,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4 (Goddard Earth Sciences Data and Information Services Center, accessed 1 March 2021);

  • 36.

    Huffman, G., Stocker, E., Bolvin, D., Nelkin, E. & Tan, J. GPM IMERG Final Precipitation L3 1 Day 0.1 Degree x 0.1 Degree V06 (ed. Savtchenko, A.) (Goddard Earth Sciences Data and Information Services Center, accessed 3 May 2021);

  • 37.

    Schneider, U. et al. GPCC’s new land floor precipitation climatology based mostly on high quality-managed in situ knowledge and its position in quantifying the international water cycle. Theor. Appl. Climatol. 115, 15–40 (2013).

    ADS  Google Scholar 

  • 38.

    Schneider, U. et al. GPCC Full Data Monthly Product Version 7.Zero at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data (Federal Ministry of Transport and Digital Infrastructure, accessed 1 April 2020);

  • 39.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS month-to-month excessive-decision gridded multivariate local weather dataset. Sci. Data 7, 109 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) Version 4.00 of High-Resolution Gridded Data of Month-by-Month Variation in Climate, Precipitation Monthly Means (The Centre for Environmental Data Analysis UK, accessed 3 April 2020);

  • 41.

    NOAA National Geophysical Data Center ETOPO1 1 Arc-Minute Global Relief Model (NOAA National Centers for Environmental Information, accessed 14 January 2021).

  • 42.

    Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis NOAA Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, accessed 14 January 2021);

  • 43.

    Serra, Y. L. et al. The North American Monsoon GPS Transect Experiment 2013. Bull. Am. Meteorol. Soc. 97, 2103–2115 (2016).

    ADS  Google Scholar 

  • 44.

    Pérez-Ruiz, E. R. et al. Landscape controls on water-power-carbon fluxes throughout totally different ecosystems throughout the North American monsoon. J. Geophys. Res. Biogeosci. 126, e2020JG005809 (2021).

    ADS  Google Scholar 

  • 45.

    Cabral-Cano, E. et al. TLALOCNet: a steady GPS-Met spine in Mexico for seismotectonic and atmospheric analysis. Seismol. Res. Lett.89, 373–381 (2018).

    Google Scholar 

  • 46.

    Neale, R. B. et al. Description of the NCAR Community Atmosphere Model (CAM 5.0) No. NCAR/TN-464+STR (NCAR, 2012);

  • 47.

    Oleson, Ok. W. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) No. NCAR/TN-478+STR (NCAR, 2010).

  • 48.

    Wehner, M. F. et al. Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group idealized configuration. J. Clim. 28, 3905–3925 (2015).

    ADS  Google Scholar 

  • 49.

    Wehner, M. F., Reed, Ok. A., Loring, B., Stone, D. & Krishnan, H. Changes in tropical cyclones beneath stabilized 1.5 and a couple of.0°C international warming eventualities as simulated by the Community Atmospheric Model beneath the HAPPI protocols. Earth Syst. Dynam. 9, 187–195 (2018).

    ADS  Google Scholar 

  • 50.

    Mo, Ok. C., Juang, H. M. H., Higgins, R. W. & Song, Y. Impact of mannequin decision on the prediction of summer season precipitation over the United States and Mexico. J. Clim. 18, 3910–3927 (2005).

    ADS  Google Scholar 

  • 51.

    Hales, J. E. Surges of maritime tropical air northward over the Gulf of California. Mon. Weather Rev. 100, 298–306 (1972).

    ADS  Google Scholar 

  • 52.

    Brenner, I. S. A surge of maritime tropical air–Gulf of California to the southwestern United States. Mon. Weather Rev. 102, 375–389 (1974).

    ADS  Google Scholar 

  • 53.

    Turrent, C. & Cavazos, T. Role of the land-sea thermal distinction in the interannual modulation of the North American Monsoon. Geophys. Res. Lett. 36, L02808 (2009).

    ADS  Google Scholar 

  • 54.

    Finch, Z. O. & Johnson, R. H. Observational evaluation of an higher-stage inverted trough throughout the 2004 North American Monsoon Experiment. Mon. Weather Rev. 138, 3540–3555 (2010).

    ADS  Google Scholar 

  • 55.

    Liang, X., Zhu, J., Kunkel, Ok. E., Ting, M. & Wang, J. X. L. Do CGCMs simulate the North American monsoon precipitation seasonal-interannual variability? J. Clim. 21, 4424–4448 (2008).

    ADS  Google Scholar 

  • 56.

    Geil, Ok. L., Serra, Y. L. & Zeng, X. Assessment of CMIP5 mannequin simulations of the North American monsoon system. J. Clim. 26, 8787–8801 (2013).

    ADS  Google Scholar 

  • 57.

    Pascale, S. et al. Weakening of the North American monsoon with international warming. Nat. Clim. Change 7, 806–812 (2017).

    ADS  Google Scholar 

  • 58.

    Ting, M. & Yu, L. Steady response to tropical heating in wavy linear and nonlinear baroclinic fashions. J. Atmos. Sci. 55, 3565–3582 (1998).

    ADS  Google Scholar 

  • 59.

    Ting, M. & Held, I. M. The stationary wave response to a tropical SST anomaly in an idealized GCM. J. Atmos. Sci. 47, 2546–2556 (1990).

    ADS  Google Scholar 

  • 60.

    Ting, M. The stationary wave response to a tropical SST anomaly in an idealized GCM. J. Atmos. Sci. 51, 3286–3308 (1994).

    ADS  Google Scholar 

  • 61.

    Held, I. M., Ting, M. & Wang, H. Northern winter stationary waves: concept and modeling. J. Clim. 15, 2125–2144 (2002).

    ADS  Google Scholar 

  • 62.

    Hoskins, B. J. & Rodwell, M. J. A mannequin of the Asian summer season monsoon. Part I: the international scale. J. Atmos. Sci. 52, 1329–1340 (1995).

    ADS  Google Scholar 

  • Source link