BusinessIron pnictides and chalcogenides: a new paradigm for superconductivity -...

Iron pnictides and chalcogenides: a new paradigm for superconductivity – Nature

-


  • 1.

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to excessive-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 2.

    Scalapino, D. J. A typical thread: the pairing interplay for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • 3.

    Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor LaO1−xFxFeAs (x = 0.05−0.12) with Tc = 26 Ok. J. Am. Chem. Soc. 130, 3296–3297 (2008). The seminal commentary of superconductivity in an iron-arsenide compound.

    CAS 

    Google Scholar
     

  • 4.

    Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a signal reversal within the order parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 101, 057003 (2008). Theoretical proposal that the s+− superconducting state in FeSCs is mediated by spin fluctuations.

    CAS 
    ADS 

    Google Scholar
     

  • 5.

    Kuroki, Ok., Usui, H., Onari, S., Arita, R. & Aoki, H. Pnictogen peak as a doable swap between high-Tc nodeless and low-Tc nodal pairings within the iron-primarily based superconductors. Phys. Rev. B 79, 224511 (2009). RPA calculation that reveals the impression of the pnictogen peak on the superconducting state.

    ADS 

    Google Scholar
     

  • 6.

    Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and construction of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    ADS 

    Google Scholar
     

  • 7.

    Chubukov, A. V. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012). A pedagogical evaluate that compares the RPA and renormalization group approaches to explain superconductivity in FeSCs.

    CAS 

    Google Scholar
     

  • 8.

    Wang, F. & Lee, D.-H. The electron-pairing mechanism of iron-primarily based superconductors. Science 332, 200–204 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • 9.

    Haule, Ok. & Kotliar, G. Coherence–incoherence crossover within the regular state of iron oxypnictides and significance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009). This theoretical work predicted the coherence–incoherence crossover brought on by the Hund’s coupling, which later led to the idea of a Hund steel.

    ADS 

    Google Scholar
     

  • 10.

    Yin, Z., Haule, Ok. & Kotliar, G. Kinetic frustration and the character of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011). This examine offers rules for organizing the households of FeSCs by their correlation energy and differentiation of the dxy orbitals.

    CAS 
    ADS 

    Google Scholar
     

  • 11.

    Stadler, Ok. M., Yin, Z. P., von Delft, J., Kotliar, G. & Weichselbaum, A. Dynamical imply-subject concept plus numerical renormalization-group examine of spin-orbital separation in a three-band Hund steel. Phys. Rev. Lett. 115, 136401 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 12.

    de’ Medici, L., Hassan, S. R., Capone, M. & Dai, X. Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 126401 (2009).

    ADS 

    Google Scholar
     

  • 13.

    Bascones, E., Valenzuela, B. & Calderón, M. J. Orbital differentiation and the position of orbital ordering within the magnetic state of Fe superconductors. Phys. Rev. B 86, 174508 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Yu, R. & Si, Q. Orbital-selective Mott part in multiorbital fashions for alkaline iron selenides Ok1−xFe2−ySe2. Phys. Rev. Lett. 110, 146402 (2013).

    ADS 

    Google Scholar
     

  • 15.

    de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).

    ADS 

    Google Scholar
     

  • 16.

    Georges, A., Medici, L. D. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 17.

    Dai, P. Antiferromagnetic order and spin dynamics in iron-primarily based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    MathSciNet 
    CAS 
    ADS 

    Google Scholar
     

  • 18.

    Lumsden, M. D. & Christianson, A. D. Magnetism in Fe-based superconductors. J. Phys. Condens. Matter 22, 203203 (2010). A topical evaluate that surveys early neutron scattering information on FeSCs, together with the commentary of spin-resonance modes within the superconducting state.

    CAS 
    ADS 

    Google Scholar
     

  • 19.

    Inosov, D. et al. Normal-state spin dynamics and temperature-dependent spin-resonance power in optimally doped BaFe1.85Co0.15As2. Nat. Phys. 6, 178–181 (2010).

    CAS 

    Google Scholar
     

  • 20.

    Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-primarily based superconductors? Nat. Phys. 10, 97–104 (2014).

    CAS 

    Google Scholar
     

  • 21.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 22.

    Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012). Elastoresistivity measurements reveal the presence of nematic fluctuations throughout the part diagram of an FeSC compound.

    CAS 
    ADS 

    Google Scholar
     

  • 23.

    Böhmer, A. E. et al. Nematic susceptibility of gap-doped and electron-doped BaFe2As2 iron-primarily based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).

    ADS 

    Google Scholar
     

  • 24.

    Gallais, Y. et al. Observation of incipient cost nematicity in Ba(Fe1−XCoX)2As2. Phys. Rev. Lett. 111, 267001 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 25.

    Zhang, P. et al. Observation of topological superconductivity on the floor of an iron-primarily based superconductor. Science 360, 182–186 (2018). ARPES measurements reveal floor topological spin-helical states in FeTe1−xSex.

    ADS 

    Google Scholar
     

  • 26.

    Singh, D. J. & Du, M.-H. Density practical examine of LaFeAsO1−xFx: a low provider density superconductor close to itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • 27.

    Eschrig, H. & Koepernik, Ok. Tight-binding fashions for the iron-primarily based superconductors. Phys. Rev. B 80, 104503 (2009).

    ADS 

    Google Scholar
     

  • 28.

    Cvetkovic, V. & Vafek, O. Space group symmetry, spin–orbit coupling, and the low-power efficient Hamiltonian for iron-primarily based superconductors. Phys. Rev. B 88, 134510 (2013).

    ADS 

    Google Scholar
     

  • 29.

    Borisenko, S. et al. Direct commentary of spin–orbit coupling in iron-primarily based superconductors. Nat. Phys. 12, 311–317 (2016).

    CAS 

    Google Scholar
     

  • 30.

    Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    ADS 

    Google Scholar
     

  • 31.

    Yang, W. L. et al. Evidence for weak digital correlations in iron pnictides. Phys. Rev. B 80, 014508 (2009).

    ADS 

    Google Scholar
     

  • 32.

    Coldea, A. I. Electronic nematic states tuned by isoelectronic substitution in bulk FeSe1−xSx. Front. Phys. 8, 594500 (2021).


    Google Scholar
     

  • 33.

    Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting hole of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Matter 27, 293203 (2015).

    CAS 

    Google Scholar
     

  • 34.

    Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital diploma of freedom in iron-primarily based superconductors. npj Quantum Mater. 2, 57 (2017).

    ADS 

    Google Scholar
     

  • 35.

    Carrington, A. Quantum oscillation research of the Fermi floor of iron-pnictide superconductors. Rep. Prog. Phys. 74, 124507 (2011).

    ADS 

    Google Scholar
     

  • 36.

    Coldea, A. I. et al. Fermi floor of superconducting LaFePO decided from quantum oscillations. Phys. Rev. Lett. 101, 216402 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • 37.

    Qazilbash, M. et al. Electronic correlations within the iron pnictides. Nat. Phys. 5, 647–650 (2009).

    CAS 

    Google Scholar
     

  • 38.

    Haule, Ok., Shim, J. H. & Kotliar, G. Correlated digital construction of LaO1−xFxFeAs. Phys. Rev. Lett. 100, 226402 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • 39.

    Skornyakov, S. L. et al. Classification of the digital correlation energy within the iron pnictides: the case of the father or mother compound BaFe2As2. Phys. Rev. B 80, 092501 (2009).

    ADS 

    Google Scholar
     

  • 40.

    Werner, P. et al. Satellites and giant doping and temperature dependence of digital properties in gap-doped BaFe2As2. Nat. Phys. 8, 331–337 (2012).

    CAS 

    Google Scholar
     

  • 41.

    Ferber, J., Foyevtsova, Ok., Valentí, R. & Jeschke, H. O. LDA + DMFT examine of the consequences of correlation in LiFeAs. Phys. Rev. B 85, 094505 (2012).

    ADS 

    Google Scholar
     

  • 42.

    Lee, G. et al. Orbital selective Fermi floor shifts and mechanism of excessive Tc superconductivity in correlated AFeAs (A = Li, Na). Phys. Rev. Lett. 109, 177001 (2012).

    ADS 

    Google Scholar
     

  • 43.

    Borisenko, S. V. et al. Superconductivity with out nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 44.

    Fanfarillo, L. et al. Orbital-dependent Fermi floor shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).

    ADS 

    Google Scholar
     

  • 45.

    Ortenzi, L., Cappelluti, E., Benfatto, L. & Pietronero, L. Fermi-surface shrinking and interband coupling in iron-primarily based pnictides. Phys. Rev. Lett. 103, 046404 (2009).

    CAS 
    ADS 

    Google Scholar
     

  • 46.

    Zantout, Ok., Backes, S. & Valentí, R. Effect of nonlocal correlations on the digital construction of LiFeAs. Phys. Rev. Lett. 123, 256401 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 47.

    Tomczak, J. M., van Schilfgaarde, M. & Kotliar, G. Many-body results in iron pnictides and chalcogenides: nonlocal versus dynamic origin of efficient lots. Phys. Rev. Lett. 109, 237010 (2012).

    ADS 

    Google Scholar
     

  • 48.

    van der Marel, D. & Sawatzky, G. A. Electron–electron interplay and localization in d and f transition metals. Phys. Rev. B 37, 10674 (1988).


    Google Scholar
     

  • 49.

    Hardy, F. et al. Evidence of sturdy correlations and coherence–incoherence crossover within the iron pnictide superconductor OkFe2As2. Phys. Rev. Lett. 111, 027002 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 50.

    Yin, Z. P., Haule, Ok. & Kotliar, G. Fractional energy-regulation habits and its origin in iron-chalcogenide and ruthenate superconductors: insights from first-rules calculations. Phys. Rev. B 86, 195141 (2012).

    ADS 

    Google Scholar
     

  • 51.

    Kreisel, A., Hirschfeld, P. J. & Andersen, B. M. On the exceptional superconductivity of FeSe and its shut cousins. Symmetry 12, 1402 (2020).

    CAS 

    Google Scholar
     

  • 52.

    Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, hole anisotropy, and spin resonance excitations in a multiorbital tJ1J2 mannequin for iron pnictides. Phys. Rev. B 89, 024509 (2014).

    ADS 

    Google Scholar
     

  • 53.

    Fanfarillo, L., Valli, A. & Capone, M. Synergy between Hund-driven correlations and boson-mediated superconductivity. Phys. Rev. Lett. 125, 177001 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 54.

    Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017). STM commentary of a sturdy hole anisotropy in FeSe and proposal of orbital differentiation contained in the superconducting state.

    CAS 
    ADS 

    Google Scholar
     

  • 55.

    Rhodes, L. C. et al. Scaling of the superconducting hole with orbital character in FeSe. Phys. Rev. B 98, 180503 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 56.

    Liu, D. et al. Orbital origin of extraordinarily anisotropic superconducting hole in nematic part of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).

    CAS 

    Google Scholar
     

  • 57.

    Yin, Z., Haule, Ok. & Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-primarily based superconductors. Nat. Phys. 10, 845–850 (2014).

    CAS 

    Google Scholar
     

  • 58.

    Pelliciari, J. et al. Magnetic second evolution and spin freezing in doped BaFe2As2. Sci. Rep. 7, 8003 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 59.

    Wang, M. et al. Doping dependence of spin excitations and its correlations with excessive-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013).

    ADS 

    Google Scholar
     

  • 60.

    Christensen, M. H., Kang, J., Andersen, B. M., Eremin, I. & Fernandes, R. M. Spin reorientation pushed by the interaction between spin-orbit coupling and Hund’s rule coupling in iron pnictides. Phys. Rev. B 92, 214509 (2015).

    ADS 

    Google Scholar
     

  • 61.

    Qureshi, N. et al. Inelastic neutron-scattering measurements of incommensurate magnetic excitations on superconducting LiFeAs single crystals. Phys. Rev. Lett. 108, 117001 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • 62.

    Wang, Q. et al. Magnetic floor state of FeSe. Nat. Commun. 7, 12182 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 63.

    Lumsden, M. D. et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex. Nat. Phys. 6, 182–186 (2010).

    CAS 

    Google Scholar
     

  • 64.

    Liu, T. et al. From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1−xSex. Nat. Mater. 9, 718–720 (2010).

    ADS 

    Google Scholar
     

  • 65.

    Gastiasoro, M. N. & Andersen, B. M. Enhancement of magnetic stripe order in iron-pnictide superconductors from the interplay between conduction electrons and magnetic impurities. Phys. Rev. Lett. 113, 067002 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 66.

    Pratt, D. Ok. et al. Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors. Phys. Rev. Lett. 106, 257001 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • 67.

    Allred, J. M. et al. Double-Q spin-density wave in iron arsenide superconductors. Nat. Phys. 12, 493–498 (2016).

    CAS 

    Google Scholar
     

  • 68.

    Lorenzana, J., Seibold, G., Ortix, C. & Grilli, M. Competing orders in FeAs layers. Phys. Rev. Lett. 101, 186402 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • 69.

    Fernandes, R. M., Kivelson, S. A. & Berg, E. Vestigial chiral and cost orders from bidirectional spin-density waves: software to the iron-primarily based superconductors. Phys. Rev. B 93, 014511 (2016).

    ADS 

    Google Scholar
     

  • 70.

    Meier, W. R. et al. Hedgehog spin-vortex crystal stabilized in a gap-doped iron-primarily based superconductor. npj Quantum Mater. 3, 5 (2018).

    ADS 

    Google Scholar
     

  • 71.

    Si, Q. & Abrahams, E. Strong correlations and magnetic frustration within the excessive Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).

    ADS 

    Google Scholar
     

  • 72.

    Seo, Ok., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital change coupling mannequin of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    ADS 

    Google Scholar
     

  • 73.

    Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-primarily based excessive-temperature superconductors. Nat. Phys. 8, 709–718 (2012).

    CAS 

    Google Scholar
     

  • 74.

    Eremin, I. & Chubukov, A. V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Phys. Rev. B 81, 024511 (2010).

    ADS 

    Google Scholar
     

  • 75.

    Fernandes, R. M. & Chubukov, A. V. Low-energy microscopic fashions for iron-primarily based superconductors: a evaluate. Rep. Prog. Phys. 80, 014503 (2016).

    ADS 

    Google Scholar
     

  • 76.

    Yildirim, T. Origin of the 150-Ok anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural part transition. Phys. Rev. Lett. 101, 057010 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • 77.

    Glasbrenner, J. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).

    CAS 

    Google Scholar
     

  • 78.

    Hirayama, M., Misawa, T., Miyake, T. & Imada, M. Ab initio research of magnetism within the iron chalcogenides FeTe and FeSe. J. Phys. Soc. Jpn 84, 093703 (2015).

    ADS 

    Google Scholar
     

  • 79.

    Abrahams, E. & Si, Q. Quantum criticality within the iron pnictides and chalcogenides. J. Phys. Condens. Matter 23, 223201 (2011).

    ADS 

    Google Scholar
     

  • 80.

    Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum crucial level mendacity beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014). A evaluate of the proof of quantum crucial behaviour in FeSCs, together with the commentary of a sharp peak within the doping-dependent penetration depth.

    CAS 
    ADS 

    Google Scholar
     

  • 81.

    Hayes, I. M. et al. Scaling between magnetic subject and temperature within the excessive-temperature superconductor BaFe2 (As1−xPx)2. Nat. Phys. 12, 916–919 (2016).


    Google Scholar
     

  • 82.

    Chowdhury, D., Swingle, B., Berg, E. & Sachdev, S. Singularity of the London penetration depth at quantum crucial factors in superconductors. Phys. Rev. Lett. 111, 157004 (2013).

    ADS 

    Google Scholar
     

  • 83.

    Levchenko, A., Vavilov, M. G., Khodas, M. & Chubukov, A. V. Enhancement of the London penetration depth in pnictides on the onset of spin-density-wave order underneath superconducting dome. Phys. Rev. Lett. 110, 177003 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 84.

    Lu, X. et al. Nematic spin correlations within the tetragonal state of uniaxial-strained BaFe2−xNixAs2. Science 345, 657–600 (2014). Inelastic neutron scattering experiments in a detwinned FeSC compound reveal the intertwining between nematic order and spin fluctuations.

    CAS 
    ADS 

    Google Scholar
     

  • 85.

    Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 86.

    Mirri, C. et al. Origin of the resistive anisotropy within the digital nematic part of BaFe2As2 revealed by optical spectroscopy. Phys. Rev. Lett. 115, 107001 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 87.

    Chuang, T.-M. et al. Nematic digital construction within the “parent” state of the iron-primarily based superconductor Ca(Fe1−xCox)2As2. Science 327, 181–184 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 88.

    Liang, S., Moreo, A. & Dagotto, E. Nematic state of pnictides stabilized by interaction between spin, orbital, and lattice levels of freedom. Phys. Rev. Lett. 111, 047004 (2013).

    ADS 

    Google Scholar
     

  • 89.

    Lee, C.-C., Yin, W.-G. & Ku, W. Ferro-orbital order and sturdy magnetic anisotropy within the father or mother compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    ADS 

    Google Scholar
     

  • 90.

    Lv, W., Krüger, F. & Phillips, P. Orbital ordering and unfrustrated (π, 0) magnetism from degenerate double change within the iron pnictides. Phys. Rev. B 82, 045125 (2010).

    ADS 

    Google Scholar
     

  • 91.

    Fang, C., Yao, H., W.-F. Tsai, J. Hu, & S. A. Kivelson, Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    ADS 

    Google Scholar
     

  • 92.

    Xu, C., Müller, M. & Sachdev, S. Ising and spin orders within the iron-primarily based superconductors. Phys. Rev. B 78, 020501 (2008).

    ADS 

    Google Scholar
     

  • 93.

    Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum supplies: nematicity and past. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    ADS 

    Google Scholar
     

  • 94.

    Wang, F., Kivelson, S. A. & LeeD.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).

    CAS 

    Google Scholar
     

  • 95.

    Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order within the iron pnictides. Phys. Rev. B 85, 024534 (2012).

    ADS 

    Google Scholar
     

  • 96.

    Gati, E., Xiang, L., Bud’ko, S. L. & Canfield, P. C. Role of the Fermi floor for the strain-tuned nematic transition within the BaFe2As2 household. Phys. Rev. B 100, 064512 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 97.

    Fernandes, R. M., Böhmer, A. E., Meingast, C. & Schmalian, J. Scaling between magnetic and lattice fluctuations in iron pnictide superconductors. Phys. Rev. Lett. 111, 137001 (2013).

    ADS 

    Google Scholar
     

  • 98.

    Baek, S. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 99.

    Böhmer, A. E. et al. Distinct strain evolution of coupled nematic and magnetic orders in FeSe. Phys. Rev. B 100, 064515 (2019).

    ADS 

    Google Scholar
     

  • 100.

    Suzuki, Y. et al. Momentum-dependent signal inversion of orbital order in superconducting FeSe. Phys. Rev. B 92, 205117 (2015).

    ADS 

    Google Scholar
     

  • 101.

    Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Superconductivity and non-Fermi liquid habits close to a nematic quantum crucial level. Proc. Natl Acad. Sci. USA 114, 4905–4910 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 102.

    Klein, A. & Chubukov, A. V. Superconductivity close to a nematic quantum crucial level: interaction between sizzling and lukewarm areas. Phys. Rev. B 98, 220501 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 103.

    Worasaran, T. et al. Nematic quantum criticality in an Fe-based superconductor revealed by pressure-tuning. Science 372, 973–977 (2021).

    CAS 

    Google Scholar
     

  • 104.

    Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based supplies. J. Phys. Soc. Jpn 89, 102002 (2020).

    ADS 

    Google Scholar
     

  • 105.

    Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-primarily based superconductor. Nat. Phys. 16, 89–94 (2020).

    CAS 

    Google Scholar
     

  • 106.

    Huang, D. & Hoffman, J. E. Monolayer FeSe on SrTiO3. Annu. Rev. Condens. Matter Phys. 8, 311–336 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 107.

    Hosono, H., Yamamoto, A., Hiramatsu, H. & Ma, Y. Recent advances in iron-primarily based superconductors towards purposes. Mater. Today 21, 278–302 (2018).

    CAS 

    Google Scholar
     

  • 108.

    Boeri, L., Dolgov, O. V. & Golubov, A. A. Is LaFeAsO1−xFx an electron–phonon superconductor? Phys. Rev. Lett. 101, 026403 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • 109.

    Mandal, S., Cohen, R. E. & Haule, Ok. Strong strain-dependent electron–phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).

    ADS 

    Google Scholar
     

  • 110.

    Lee, J. et al. Interfacial mode coupling because the origin of the enhancement of Tc in FeSe movies on SrTiO3. Nature 515, 245–248 (2014). The commentary of a connection between a substrate phonon mode and the enhancement of superconductivity in monolayer FeSe grown on SrTiO3.

    CAS 
    ADS 

    Google Scholar
     

  • 111.

    Thomale, R., Platt, C., Hanke, W., Hu, J. & Bernevig, B. A. Exotic d-wave superconducting state of strongly gap-doped OkxBa1−xFe2As2. Phys. Rev. Lett. 107, 117001 (2011).

    ADS 

    Google Scholar
     

  • 112.

    Paul, I. & Garst, M. Lattice results on nematic quantum criticality in metals. Phys. Rev. Lett. 118, 227601 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 113.

    Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: evaluation of the 5-orbital Hubbard–Holstein mannequin. Phys. Rev. Lett. 104, 157001 (2010).

    ADS 

    Google Scholar
     

  • 114.

    Chen, C.-T., Tsuei, C., Ketchen, M., Ren, Z.-A. & Zhao, Z. Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop. Nat. Phys. 6, 260–264 (2010).

    CAS 

    Google Scholar
     

  • 115.

    Hanaguri, T., Niitaka, S., Kuroki, Ok. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 116.

    Cho, Ok., Kończykowski, M., Teknowijoyo, S., Tanatar, M. A. & Prozorov, R. Using electron irradiation to probe iron-primarily based superconductors. Supercond. Sci. Technol. 31, 064002 (2018).

    ADS 

    Google Scholar
     

  • 117.

    Yang, H. et al. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy. Nat. Commun. 4, 2749 (2013).

    ADS 

    Google Scholar
     

  • 118.

    Okazaki, Ok. et al. Octet-line node construction of superconducting order parameter in OkFe2As2. Science 337, 1314–1317 (2012). Direct commentary of unintentional nodes in a gap-doped FeSC compound by way of laser ARPES measurements.

    CAS 
    ADS 

    Google Scholar
     

  • 119.

    Lee, T.-H., Chubukov, A. V., Miao, H. & Kotliar, G. Pairing mechanism in Hund’s steel superconductors and the universality of the superconducting hole to crucial temperature ratio. Phys. Rev. Lett. 121, 187003 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 120.

    Stanev, V. & Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 81, 134522 (2010).

    ADS 

    Google Scholar
     

  • 121.

    Lee, W.-C., Zhang, S.-C. & Wu, C. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors. Phys. Rev. Lett. 102, 217002 (2009).

    ADS 

    Google Scholar
     

  • 122.

    Grinenko, V. et al. Superconductivity with damaged time-reversal symmetry inside a superconducting s-wave state. Nat. Phys. 16, 789–794 (2020).

    CAS 

    Google Scholar
     

  • 123.

    Kretzschmar, F. et al. Raman-scattering detection of almost degenerate s-wave and d-wave pairing channels in iron-primarily based Ba0.6Ok0.4Fe2As2 and Rb0.8Fe1.6Se2 superconductors. Phys. Rev. Lett. 110, 187002 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 124.

    Thorsmølle, V. Ok. et al. Critical quadrupole fluctuations and collective modes in iron pnictide superconductors. Phys. Rev. B 93, 054515 (2016).

    ADS 

    Google Scholar
     

  • 125.

    Gallais, Y., Paul, I., Chauvière, L. & Schmalian, J. Nematic resonance within the Raman response of iron-primarily based superconductors. Phys. Rev. Lett. 116, 017001 (2016).

    ADS 

    Google Scholar
     

  • 126.

    Tafti, F. et al. Sudden reversal within the strain dependence of Tc within the iron-primarily based superconductor OkFe2As2. Nat. Phys. 9, 349–352 (2013).

    CAS 

    Google Scholar
     

  • 127.

    Rinott, S. et al. Tuning throughout the BCS–BEC crossover within the multiband superconductor Fe1+ySexTe1−x: an angle-resolved photoemission examine. Sci. Adv. 3, e1602372 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 128.

    Lohani, H. et al. Band inversion and topology of the majority digital construction in FeSe0.45Te0.55. Phys. Rev. B 101, 245146 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 129.

    Zhang, P. et al. Multiple topological states in iron-primarily based superconductors. Nat. Phys. 15, 41–47 (2019).

    CAS 

    Google Scholar
     

  • 130.

    König, E. J. & Coleman, P. Crystalline-symmetry-protected helical Majorana modes within the iron pnictides. Phys. Rev. Lett. 122, 207001 (2019).

    ADS 

    Google Scholar
     

  • 131.

    Kong, L. et al. Half-integer stage shift of vortex sure states in an iron-primarily based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    CAS 

    Google Scholar
     

  • 132.

    Wang, D. et al. Evidence for Majorana sure states in an iron-primarily based superconductor. Science 362, 333–335 (2018). STM measurements reveal a zero-bias peak inside vortices of superconducting FeTe1−xSex suggestive of Majorana zero modes.

    CAS 
    ADS 

    Google Scholar
     

  • 133.

    Machida, T. et al. Zero-energy vortex sure state within the superconducting topological floor state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 134.

    Yin, J.-X. et al. Observation of a strong zero-power sure state in iron-primarily based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    CAS 

    Google Scholar
     

  • 135.

    Chen, C. et al. Atomic line defects and zero-power finish states in monolayer Fe(Te,Se) excessive-temperature superconductors. Nat. Phys. 16, 536–540 (2020).

    CAS 

    Google Scholar
     

  • 136.

    Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-primarily based superconductor. Science 367, 104–108 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 137.

    Zhang, R.-X., Cole, W. S. & Das Sarma, S. Helical hinge Majorana modes in iron-primarily based superconductors. Phys. Rev. Lett. 122, 187001 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 138.

    Misawa, T., Nakamura, Ok. & Imada, M. Ab initio proof for sturdy correlation related to Mott proximity in iron-primarily based superconductors. Phys. Rev. Lett. 108, 177007 (2012).

    ADS 

    Google Scholar
     

  • 139.

    Aichhorn, M., Biermann, S., Miyake, T., Georges, A. & Imada, M. Theoretical proof for sturdy correlations and incoherent metallic state in FeSe. Phys. Rev. B 82, 064504 (2010).

    ADS 

    Google Scholar
     

  • 140.

    Miyake, T., Nakamura, Ok., Arita, R. & Imada, M. Comparison of ab initio low-power fashions for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe: electron correlation and covalency. J. Phys. Soc. Jpn 79, 044705 (2010).

    ADS 

    Google Scholar
     

  • 141.

    Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking within the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Kong, L. et al. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nat. Commun. 12, 4146 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 143.

    Karahasanovic, U. & Schmalian, J. Elastic coupling and spin-pushed nematicity in iron-primarily based superconductors. Phys. Rev. B 93, 064520 (2016).

    ADS 

    Google Scholar
     

  • 144.

    Dioguardi, A. P. et al. NMR proof for inhomogeneous glassy habits pushed by nematic fluctuations in iron arsenide superconductors. Phys. Rev. B 92, 165116 (2015).

    ADS 

    Google Scholar
     

  • 145.

    Frandsen, B. A., Wang, Q., Wu, S., Zhao, J. & Birgeneau, R. J. Quantitative characterization of quick-vary orthorhombic fluctuations in FeSe via pair distribution perform evaluation. Phys. Rev. B 100, 020504 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 146.

    Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • 147.

    Vafek, O. & Chubukov, A. V. Hund interplay, spin–orbit coupling, and the mechanism of superconductivity in strongly gap-doped iron pnictides. Phys. Rev. Lett. 118, 087003 (2017).

    ADS 

    Google Scholar
     

  • 148.

    Katayama, N. et al. Superconductivity in Ca1−xLaxFeAs2: a novel 112-type iron pnictide with arsenic zigzag bonds. J. Phys. Soc. Jpn 82, 123702 (2013).

    ADS 

    Google Scholar
     

  • 149.

    Dagotto, E. Colloquium: The sudden properties of alkali steel iron selenide superconductors. Rev. Mod. Phys. 85, 849–867 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 150.

    Wu, S., Frandsen, B. A., Wang, M., Yi, M. & Birgeneau, R. Iron-based chalcogenide spin ladder BaFe2X3 (X = Se, S). J. Supercond. Nov. Magn. 33, 143–158 (2020).

    CAS 

    Google Scholar
     

  • 151.

    Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology information. J. Appl.Crystallogr. 44, 1272–1276 (2011).

    CAS 

    Google Scholar
     

  • 152.

    Kong, L. & Ding, H. Emergent vortex Majorana zero mode in iron-primarily based superconductors. Acta Phys. Sin. 69, 110301 (2020).

    ADS 

    Google Scholar
     



  • Source link

    Latest news

    Voice Control In Mobile Apps – How To Do It

    Man has always aimed to make life comfortable and easy. When he wanted to travel from place to place,...

    Proven Digital Innovations to Scale-Up Business Operations

    Vast improvements in digital technology have propelled the competitive market to achieve business transformation and create more effective ways...

    Is Bitcoin A Burden For CPAs To Manage?

    Since the beginning of 2022, I have been pounding the pavement to talk with brick-and-mortar merchants about accepting...

    Final Audio E3000C and E1000C Wired Earphones Review

    The introduction of high-resolution audio to Apple Music in 2021 boosted the already active audiophile movement, and increased...

    Must read

    Voice Control In Mobile Apps – How To Do It

    Man has always aimed to make life comfortable and...

    Proven Digital Innovations to Scale-Up Business Operations

    Vast improvements in digital technology have propelled the competitive...

    You might also likeRELATED
    Recommended to you