Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to excessive-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Scalapino, D. J. A typical thread: the pairing interplay for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor LaO1−xFxFeAs (x = 0.05−0.12) with Tc = 26 Ok. J. Am. Chem. Soc. 130, 3296–3297 (2008). The seminal commentary of superconductivity in an iron-arsenide compound.
Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a signal reversal within the order parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 101, 057003 (2008). Theoretical proposal that the s+− superconducting state in FeSCs is mediated by spin fluctuations.
Kuroki, Ok., Usui, H., Onari, S., Arita, R. & Aoki, H. Pnictogen peak as a doable swap between high-Tc nodeless and low-Tc nodal pairings within the iron-primarily based superconductors. Phys. Rev. B 79, 224511 (2009). RPA calculation that reveals the impression of the pnictogen peak on the superconducting state.
Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and construction of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).
Chubukov, A. V. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012). A pedagogical evaluate that compares the RPA and renormalization group approaches to explain superconductivity in FeSCs.
Wang, F. & Lee, D.-H. The electron-pairing mechanism of iron-primarily based superconductors. Science 332, 200–204 (2011).
Haule, Ok. & Kotliar, G. Coherence–incoherence crossover within the regular state of iron oxypnictides and significance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009). This theoretical work predicted the coherence–incoherence crossover brought on by the Hund’s coupling, which later led to the idea of a Hund steel.
Yin, Z., Haule, Ok. & Kotliar, G. Kinetic frustration and the character of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011). This examine offers rules for organizing the households of FeSCs by their correlation energy and differentiation of the dxy orbitals.
Stadler, Ok. M., Yin, Z. P., von Delft, J., Kotliar, G. & Weichselbaum, A. Dynamical imply-subject concept plus numerical renormalization-group examine of spin-orbital separation in a three-band Hund steel. Phys. Rev. Lett. 115, 136401 (2015).
de’ Medici, L., Hassan, S. R., Capone, M. & Dai, X. Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 126401 (2009).
Bascones, E., Valenzuela, B. & Calderón, M. J. Orbital differentiation and the position of orbital ordering within the magnetic state of Fe superconductors. Phys. Rev. B 86, 174508 (2012).
Yu, R. & Si, Q. Orbital-selective Mott part in multiorbital fashions for alkaline iron selenides Ok1−xFe2−ySe2. Phys. Rev. Lett. 110, 146402 (2013).
de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).
Georges, A., Medici, L. D. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).
Dai, P. Antiferromagnetic order and spin dynamics in iron-primarily based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).
Lumsden, M. D. & Christianson, A. D. Magnetism in Fe-based superconductors. J. Phys. Condens. Matter 22, 203203 (2010). A topical evaluate that surveys early neutron scattering information on FeSCs, together with the commentary of spin-resonance modes within the superconducting state.
Inosov, D. et al. Normal-state spin dynamics and temperature-dependent spin-resonance power in optimally doped BaFe1.85Co0.15As2. Nat. Phys. 6, 178–181 (2010).
Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-primarily based superconductors? Nat. Phys. 10, 97–104 (2014).
Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).
Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012). Elastoresistivity measurements reveal the presence of nematic fluctuations throughout the part diagram of an FeSC compound.
Böhmer, A. E. et al. Nematic susceptibility of gap-doped and electron-doped BaFe2As2 iron-primarily based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).
Gallais, Y. et al. Observation of incipient cost nematicity in Ba(Fe1−XCoX)2As2. Phys. Rev. Lett. 111, 267001 (2013).
Zhang, P. et al. Observation of topological superconductivity on the floor of an iron-primarily based superconductor. Science 360, 182–186 (2018). ARPES measurements reveal floor topological spin-helical states in FeTe1−xSex.
Singh, D. J. & Du, M.-H. Density practical examine of LaFeAsO1−xFx: a low provider density superconductor close to itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).
Eschrig, H. & Koepernik, Ok. Tight-binding fashions for the iron-primarily based superconductors. Phys. Rev. B 80, 104503 (2009).
Cvetkovic, V. & Vafek, O. Space group symmetry, spin–orbit coupling, and the low-power efficient Hamiltonian for iron-primarily based superconductors. Phys. Rev. B 88, 134510 (2013).
Borisenko, S. et al. Direct commentary of spin–orbit coupling in iron-primarily based superconductors. Nat. Phys. 12, 311–317 (2016).
Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).
Yang, W. L. et al. Evidence for weak digital correlations in iron pnictides. Phys. Rev. B 80, 014508 (2009).
Coldea, A. I. Electronic nematic states tuned by isoelectronic substitution in bulk FeSe1−xSx. Front. Phys. 8, 594500 (2021).
Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting hole of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Matter 27, 293203 (2015).
Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital diploma of freedom in iron-primarily based superconductors. npj Quantum Mater. 2, 57 (2017).
Carrington, A. Quantum oscillation research of the Fermi floor of iron-pnictide superconductors. Rep. Prog. Phys. 74, 124507 (2011).
Coldea, A. I. et al. Fermi floor of superconducting LaFePO decided from quantum oscillations. Phys. Rev. Lett. 101, 216402 (2008).
Qazilbash, M. et al. Electronic correlations within the iron pnictides. Nat. Phys. 5, 647–650 (2009).
Haule, Ok., Shim, J. H. & Kotliar, G. Correlated digital construction of LaO1−xFxFeAs. Phys. Rev. Lett. 100, 226402 (2008).
Skornyakov, S. L. et al. Classification of the digital correlation energy within the iron pnictides: the case of the father or mother compound BaFe2As2. Phys. Rev. B 80, 092501 (2009).
Werner, P. et al. Satellites and giant doping and temperature dependence of digital properties in gap-doped BaFe2As2. Nat. Phys. 8, 331–337 (2012).
Ferber, J., Foyevtsova, Ok., Valentí, R. & Jeschke, H. O. LDA + DMFT examine of the consequences of correlation in LiFeAs. Phys. Rev. B 85, 094505 (2012).
Lee, G. et al. Orbital selective Fermi floor shifts and mechanism of excessive Tc superconductivity in correlated AFeAs (A = Li, Na). Phys. Rev. Lett. 109, 177001 (2012).
Borisenko, S. V. et al. Superconductivity with out nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).
Fanfarillo, L. et al. Orbital-dependent Fermi floor shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).
Ortenzi, L., Cappelluti, E., Benfatto, L. & Pietronero, L. Fermi-surface shrinking and interband coupling in iron-primarily based pnictides. Phys. Rev. Lett. 103, 046404 (2009).
Zantout, Ok., Backes, S. & Valentí, R. Effect of nonlocal correlations on the digital construction of LiFeAs. Phys. Rev. Lett. 123, 256401 (2019).
Tomczak, J. M., van Schilfgaarde, M. & Kotliar, G. Many-body results in iron pnictides and chalcogenides: nonlocal versus dynamic origin of efficient lots. Phys. Rev. Lett. 109, 237010 (2012).
van der Marel, D. & Sawatzky, G. A. Electron–electron interplay and localization in d and f transition metals. Phys. Rev. B 37, 10674 (1988).
Hardy, F. et al. Evidence of sturdy correlations and coherence–incoherence crossover within the iron pnictide superconductor OkFe2As2. Phys. Rev. Lett. 111, 027002 (2013).
Yin, Z. P., Haule, Ok. & Kotliar, G. Fractional energy-regulation habits and its origin in iron-chalcogenide and ruthenate superconductors: insights from first-rules calculations. Phys. Rev. B 86, 195141 (2012).
Kreisel, A., Hirschfeld, P. J. & Andersen, B. M. On the exceptional superconductivity of FeSe and its shut cousins. Symmetry 12, 1402 (2020).
Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, hole anisotropy, and spin resonance excitations in a multiorbital t–J1–J2 mannequin for iron pnictides. Phys. Rev. B 89, 024509 (2014).
Fanfarillo, L., Valli, A. & Capone, M. Synergy between Hund-driven correlations and boson-mediated superconductivity. Phys. Rev. Lett. 125, 177001 (2020).
Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017). STM commentary of a sturdy hole anisotropy in FeSe and proposal of orbital differentiation contained in the superconducting state.
Rhodes, L. C. et al. Scaling of the superconducting hole with orbital character in FeSe. Phys. Rev. B 98, 180503 (2018).
Liu, D. et al. Orbital origin of extraordinarily anisotropic superconducting hole in nematic part of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).
Yin, Z., Haule, Ok. & Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-primarily based superconductors. Nat. Phys. 10, 845–850 (2014).
Pelliciari, J. et al. Magnetic second evolution and spin freezing in doped BaFe2As2. Sci. Rep. 7, 8003 (2017).
Wang, M. et al. Doping dependence of spin excitations and its correlations with excessive-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013).
Christensen, M. H., Kang, J., Andersen, B. M., Eremin, I. & Fernandes, R. M. Spin reorientation pushed by the interaction between spin-orbit coupling and Hund’s rule coupling in iron pnictides. Phys. Rev. B 92, 214509 (2015).
Qureshi, N. et al. Inelastic neutron-scattering measurements of incommensurate magnetic excitations on superconducting LiFeAs single crystals. Phys. Rev. Lett. 108, 117001 (2012).
Wang, Q. et al. Magnetic floor state of FeSe. Nat. Commun. 7, 12182 (2016).
Lumsden, M. D. et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex. Nat. Phys. 6, 182–186 (2010).
Liu, T. et al. From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1−xSex. Nat. Mater. 9, 718–720 (2010).
Gastiasoro, M. N. & Andersen, B. M. Enhancement of magnetic stripe order in iron-pnictide superconductors from the interplay between conduction electrons and magnetic impurities. Phys. Rev. Lett. 113, 067002 (2014).
Pratt, D. Ok. et al. Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors. Phys. Rev. Lett. 106, 257001 (2011).
Allred, J. M. et al. Double-Q spin-density wave in iron arsenide superconductors. Nat. Phys. 12, 493–498 (2016).
Lorenzana, J., Seibold, G., Ortix, C. & Grilli, M. Competing orders in FeAs layers. Phys. Rev. Lett. 101, 186402 (2008).
Fernandes, R. M., Kivelson, S. A. & Berg, E. Vestigial chiral and cost orders from bidirectional spin-density waves: software to the iron-primarily based superconductors. Phys. Rev. B 93, 014511 (2016).
Meier, W. R. et al. Hedgehog spin-vortex crystal stabilized in a gap-doped iron-primarily based superconductor. npj Quantum Mater. 3, 5 (2018).
Si, Q. & Abrahams, E. Strong correlations and magnetic frustration within the excessive Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).
Seo, Ok., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital change coupling mannequin of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).
Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-primarily based excessive-temperature superconductors. Nat. Phys. 8, 709–718 (2012).
Eremin, I. & Chubukov, A. V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Phys. Rev. B 81, 024511 (2010).
Fernandes, R. M. & Chubukov, A. V. Low-energy microscopic fashions for iron-primarily based superconductors: a evaluate. Rep. Prog. Phys. 80, 014503 (2016).
Yildirim, T. Origin of the 150-Ok anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural part transition. Phys. Rev. Lett. 101, 057010 (2008).
Glasbrenner, J. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).
Hirayama, M., Misawa, T., Miyake, T. & Imada, M. Ab initio research of magnetism within the iron chalcogenides FeTe and FeSe. J. Phys. Soc. Jpn 84, 093703 (2015).
Abrahams, E. & Si, Q. Quantum criticality within the iron pnictides and chalcogenides. J. Phys. Condens. Matter 23, 223201 (2011).
Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum crucial level mendacity beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014). A evaluate of the proof of quantum crucial behaviour in FeSCs, together with the commentary of a sharp peak within the doping-dependent penetration depth.
Hayes, I. M. et al. Scaling between magnetic subject and temperature within the excessive-temperature superconductor BaFe2 (As1−xPx)2. Nat. Phys. 12, 916–919 (2016).
Chowdhury, D., Swingle, B., Berg, E. & Sachdev, S. Singularity of the London penetration depth at quantum crucial factors in superconductors. Phys. Rev. Lett. 111, 157004 (2013).
Levchenko, A., Vavilov, M. G., Khodas, M. & Chubukov, A. V. Enhancement of the London penetration depth in pnictides on the onset of spin-density-wave order underneath superconducting dome. Phys. Rev. Lett. 110, 177003 (2013).
Lu, X. et al. Nematic spin correlations within the tetragonal state of uniaxial-strained BaFe2−xNixAs2. Science 345, 657–600 (2014). Inelastic neutron scattering experiments in a detwinned FeSC compound reveal the intertwining between nematic order and spin fluctuations.
Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).
Mirri, C. et al. Origin of the resistive anisotropy within the digital nematic part of BaFe2As2 revealed by optical spectroscopy. Phys. Rev. Lett. 115, 107001 (2015).
Chuang, T.-M. et al. Nematic digital construction within the “parent” state of the iron-primarily based superconductor Ca(Fe1−xCox)2As2. Science 327, 181–184 (2010).
Liang, S., Moreo, A. & Dagotto, E. Nematic state of pnictides stabilized by interaction between spin, orbital, and lattice levels of freedom. Phys. Rev. Lett. 111, 047004 (2013).
Lee, C.-C., Yin, W.-G. & Ku, W. Ferro-orbital order and sturdy magnetic anisotropy within the father or mother compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).
Lv, W., Krüger, F. & Phillips, P. Orbital ordering and unfrustrated (π, 0) magnetism from degenerate double change within the iron pnictides. Phys. Rev. B 82, 045125 (2010).
Fang, C., Yao, H., W.-F. Tsai, J. Hu, & S. A. Kivelson, Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).
Xu, C., Müller, M. & Sachdev, S. Ising and spin orders within the iron-primarily based superconductors. Phys. Rev. B 78, 020501 (2008).
Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum supplies: nematicity and past. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).
Wang, F., Kivelson, S. A. & LeeD.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).
Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order within the iron pnictides. Phys. Rev. B 85, 024534 (2012).
Gati, E., Xiang, L., Bud’ko, S. L. & Canfield, P. C. Role of the Fermi floor for the strain-tuned nematic transition within the BaFe2As2 household. Phys. Rev. B 100, 064512 (2019).
Fernandes, R. M., Böhmer, A. E., Meingast, C. & Schmalian, J. Scaling between magnetic and lattice fluctuations in iron pnictide superconductors. Phys. Rev. Lett. 111, 137001 (2013).
Baek, S. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).
Böhmer, A. E. et al. Distinct strain evolution of coupled nematic and magnetic orders in FeSe. Phys. Rev. B 100, 064515 (2019).
Suzuki, Y. et al. Momentum-dependent signal inversion of orbital order in superconducting FeSe. Phys. Rev. B 92, 205117 (2015).
Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Superconductivity and non-Fermi liquid habits close to a nematic quantum crucial level. Proc. Natl Acad. Sci. USA 114, 4905–4910 (2017).
Klein, A. & Chubukov, A. V. Superconductivity close to a nematic quantum crucial level: interaction between sizzling and lukewarm areas. Phys. Rev. B 98, 220501 (2018).
Worasaran, T. et al. Nematic quantum criticality in an Fe-based superconductor revealed by pressure-tuning. Science 372, 973–977 (2021).
Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based supplies. J. Phys. Soc. Jpn 89, 102002 (2020).
Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-primarily based superconductor. Nat. Phys. 16, 89–94 (2020).
Huang, D. & Hoffman, J. E. Monolayer FeSe on SrTiO3. Annu. Rev. Condens. Matter Phys. 8, 311–336 (2017).
Hosono, H., Yamamoto, A., Hiramatsu, H. & Ma, Y. Recent advances in iron-primarily based superconductors towards purposes. Mater. Today 21, 278–302 (2018).
Boeri, L., Dolgov, O. V. & Golubov, A. A. Is LaFeAsO1−xFx an electron–phonon superconductor? Phys. Rev. Lett. 101, 026403 (2008).
Mandal, S., Cohen, R. E. & Haule, Ok. Strong strain-dependent electron–phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).
Lee, J. et al. Interfacial mode coupling because the origin of the enhancement of Tc in FeSe movies on SrTiO3. Nature 515, 245–248 (2014). The commentary of a connection between a substrate phonon mode and the enhancement of superconductivity in monolayer FeSe grown on SrTiO3.
Thomale, R., Platt, C., Hanke, W., Hu, J. & Bernevig, B. A. Exotic d-wave superconducting state of strongly gap-doped OkxBa1−xFe2As2. Phys. Rev. Lett. 107, 117001 (2011).
Paul, I. & Garst, M. Lattice results on nematic quantum criticality in metals. Phys. Rev. Lett. 118, 227601 (2017).
Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: evaluation of the 5-orbital Hubbard–Holstein mannequin. Phys. Rev. Lett. 104, 157001 (2010).
Chen, C.-T., Tsuei, C., Ketchen, M., Ren, Z.-A. & Zhao, Z. Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop. Nat. Phys. 6, 260–264 (2010).
Hanaguri, T., Niitaka, S., Kuroki, Ok. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).
Cho, Ok., Kończykowski, M., Teknowijoyo, S., Tanatar, M. A. & Prozorov, R. Using electron irradiation to probe iron-primarily based superconductors. Supercond. Sci. Technol. 31, 064002 (2018).
Yang, H. et al. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy. Nat. Commun. 4, 2749 (2013).
Okazaki, Ok. et al. Octet-line node construction of superconducting order parameter in OkFe2As2. Science 337, 1314–1317 (2012). Direct commentary of unintentional nodes in a gap-doped FeSC compound by way of laser ARPES measurements.
Lee, T.-H., Chubukov, A. V., Miao, H. & Kotliar, G. Pairing mechanism in Hund’s steel superconductors and the universality of the superconducting hole to crucial temperature ratio. Phys. Rev. Lett. 121, 187003 (2018).
Stanev, V. & Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 81, 134522 (2010).
Lee, W.-C., Zhang, S.-C. & Wu, C. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors. Phys. Rev. Lett. 102, 217002 (2009).
Grinenko, V. et al. Superconductivity with damaged time-reversal symmetry inside a superconducting s-wave state. Nat. Phys. 16, 789–794 (2020).
Kretzschmar, F. et al. Raman-scattering detection of almost degenerate s-wave and d-wave pairing channels in iron-primarily based Ba0.6Ok0.4Fe2As2 and Rb0.8Fe1.6Se2 superconductors. Phys. Rev. Lett. 110, 187002 (2013).
Thorsmølle, V. Ok. et al. Critical quadrupole fluctuations and collective modes in iron pnictide superconductors. Phys. Rev. B 93, 054515 (2016).
Gallais, Y., Paul, I., Chauvière, L. & Schmalian, J. Nematic resonance within the Raman response of iron-primarily based superconductors. Phys. Rev. Lett. 116, 017001 (2016).
Tafti, F. et al. Sudden reversal within the strain dependence of Tc within the iron-primarily based superconductor OkFe2As2. Nat. Phys. 9, 349–352 (2013).
Rinott, S. et al. Tuning throughout the BCS–BEC crossover within the multiband superconductor Fe1+ySexTe1−x: an angle-resolved photoemission examine. Sci. Adv. 3, e1602372 (2017).
Lohani, H. et al. Band inversion and topology of the majority digital construction in FeSe0.45Te0.55. Phys. Rev. B 101, 245146 (2020).
Zhang, P. et al. Multiple topological states in iron-primarily based superconductors. Nat. Phys. 15, 41–47 (2019).
König, E. J. & Coleman, P. Crystalline-symmetry-protected helical Majorana modes within the iron pnictides. Phys. Rev. Lett. 122, 207001 (2019).
Kong, L. et al. Half-integer stage shift of vortex sure states in an iron-primarily based superconductor. Nat. Phys. 15, 1181–1187 (2019).
Wang, D. et al. Evidence for Majorana sure states in an iron-primarily based superconductor. Science 362, 333–335 (2018). STM measurements reveal a zero-bias peak inside vortices of superconducting FeTe1−xSex suggestive of Majorana zero modes.
Machida, T. et al. Zero-energy vortex sure state within the superconducting topological floor state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).
Yin, J.-X. et al. Observation of a strong zero-power sure state in iron-primarily based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).
Chen, C. et al. Atomic line defects and zero-power finish states in monolayer Fe(Te,Se) excessive-temperature superconductors. Nat. Phys. 16, 536–540 (2020).
Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-primarily based superconductor. Science 367, 104–108 (2020).
Zhang, R.-X., Cole, W. S. & Das Sarma, S. Helical hinge Majorana modes in iron-primarily based superconductors. Phys. Rev. Lett. 122, 187001 (2019).
Misawa, T., Nakamura, Ok. & Imada, M. Ab initio proof for sturdy correlation related to Mott proximity in iron-primarily based superconductors. Phys. Rev. Lett. 108, 177007 (2012).
Aichhorn, M., Biermann, S., Miyake, T., Georges, A. & Imada, M. Theoretical proof for sturdy correlations and incoherent metallic state in FeSe. Phys. Rev. B 82, 064504 (2010).
Miyake, T., Nakamura, Ok., Arita, R. & Imada, M. Comparison of ab initio low-power fashions for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe: electron correlation and covalency. J. Phys. Soc. Jpn 79, 044705 (2010).
Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking within the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).
Kong, L. et al. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nat. Commun. 12, 4146 (2021).
Karahasanovic, U. & Schmalian, J. Elastic coupling and spin-pushed nematicity in iron-primarily based superconductors. Phys. Rev. B 93, 064520 (2016).
Dioguardi, A. P. et al. NMR proof for inhomogeneous glassy habits pushed by nematic fluctuations in iron arsenide superconductors. Phys. Rev. B 92, 165116 (2015).
Frandsen, B. A., Wang, Q., Wu, S., Zhao, J. & Birgeneau, R. J. Quantitative characterization of quick-vary orthorhombic fluctuations in FeSe via pair distribution perform evaluation. Phys. Rev. B 100, 020504 (2019).
Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).
Vafek, O. & Chubukov, A. V. Hund interplay, spin–orbit coupling, and the mechanism of superconductivity in strongly gap-doped iron pnictides. Phys. Rev. Lett. 118, 087003 (2017).
Katayama, N. et al. Superconductivity in Ca1−xLaxFeAs2: a novel 112-type iron pnictide with arsenic zigzag bonds. J. Phys. Soc. Jpn 82, 123702 (2013).
Dagotto, E. Colloquium: The sudden properties of alkali steel iron selenide superconductors. Rev. Mod. Phys. 85, 849–867 (2013).
Wu, S., Frandsen, B. A., Wang, M., Yi, M. & Birgeneau, R. Iron-based chalcogenide spin ladder BaFe2X3 (X = Se, S). J. Supercond. Nov. Magn. 33, 143–158 (2020).
Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology information. J. Appl.Crystallogr. 44, 1272–1276 (2011).
Kong, L. & Ding, H. Emergent vortex Majorana zero mode in iron-primarily based superconductors. Acta Phys. Sin. 69, 110301 (2020).