High-order superlattices by rolling up van der Waals heterostructures

0
69


  • 1.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 

    Google Scholar
     

  • 2.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 3.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 4.

    Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • 5.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 

    Google Scholar
     

  • 6.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 7.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS 

    Google Scholar
     

  • 8.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical grapheme heterostructures. Science 335, 947–950 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • 9.

    Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 10.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 11.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 12.

    Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 13.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 14.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 15.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 16.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 17.

    Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 18.

    Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 19.

    Kim, K. K., Lee, H. S. & Lee, Y. H. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chem. Soc. Rev. 47, 6342–6369 (2018).

    CAS 

    Google Scholar
     

  • 20.

    Chen, P., Zhang, Z. W., Duan, X. D. & Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47, 3129–3151 (2018).

    CAS 

    Google Scholar
     

  • 21.

    Zhao, M. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 22.

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 23.

    Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 24.

    Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS 

    Google Scholar
     

  • 25.

    Shi, Y. M., Li, H. N. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    CAS 

    Google Scholar
     

  • 26.

    Yu, Y. F. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 27.

    Zhang, J. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 28, 1950–1956 (2016).

    CAS 

    Google Scholar
     

  • 28.

    Yang, T. F. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 29.

    Li, F. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 31, 1901351 (2019).


    Google Scholar
     

  • 30.

    Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    CAS 

    Google Scholar
     

  • 31.

    Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 32.

    Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 33.

    Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 34.

    Zhang, Z. W. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7, 737–744 (2020).

    CAS 

    Google Scholar
     

  • 35.

    Halim, U. et al. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat. Commun. 4, 2213 (2013).

    MathSciNet 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 36.

    Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 37.

    Ping, Y., Rocca, D. & Galli, G. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem. Soc. Rev. 42, 2437–2469 (2013).

    CAS 

    Google Scholar
     

  • 38.

    Yan, J., Thygesen, K. S. & Jacobsen, K. W. Nonlocal screening of plasmons in grapheneby semiconducting and metallic substrates: first-principles calculations. Phys. Rev. Lett. 106, 146803 (2011).

    ADS 

    Google Scholar
     

  • 39.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 40.

    Zeng, H. L. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Gonzalez, J. M. & Oleynik, I. I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 94, 125443 (2016).

    ADS 

    Google Scholar
     

  • 42.

    Heremans, J., Thrush, C. M., Lin, Y. M., Cronin, S. B. & Dresselhaus, M. S. Transport properties of antimony nanowires. Phys. Rev. B 63, 085406 (2001).

    ADS 

    Google Scholar
     

  • 43.

    Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • 44.

    Wang, X. L., Du, Y., Dou, S. X. & Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett. 108, 266806 (2012).

    ADS 

    Google Scholar
     

  • 45.

    Wang, X. J., Yates, J. R., Souza, I. & Vanderbilt, D. Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation. Phys. Rev. B 74, 195118 (2006).

    ADS 

    Google Scholar
     

  • 46.

    Qiao, Z. H. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    ADS 

    Google Scholar
     

  • 47.

    Khouri, T. et al. Linear magnetoresistance in a quasifree two-dimensional electron gas in an ultrahigh mobility GaAs quantum well. Phys. Rev. Lett. 117, 256601 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 48.

    Xiao, C. et al. Linear magnetoresistance induced by intra-scattering semiclassics of Bloch electrons. Phys. Rev. B 101, 201410 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 49.

    Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 50.

    Guo, C. H., Xu, J. Q., Rocca, D. & Ping, Y. Substrate screening approach for quasiparticle energies of two-dimensional interfaces with lattice mismatch. Phys. Rev. B 102, 205113 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 51.

    Zhu, J. T. et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 142, 16276–16284 (2020).

    CAS 

    Google Scholar
     

  • 52.

    Liu, H. et al. Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 12, 13174–13181 (2020).


    Google Scholar
     

  • 53.

    Zhang, C. X. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2017).


    Google Scholar
     

  • 54.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS 
    ADS 

    Google Scholar
     

  • 55.

    Gianozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).


    Google Scholar
     

  • 56.

    Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • 57.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 58.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS 

    Google Scholar
     

  • 59.

    Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    CAS 
    ADS 

    Google Scholar
     

  • 60.

    Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, 233103 (2006).

    ADS 

    Google Scholar
     

  • 61.

    Giacomini, R. & Martino, J. A. Modeling silicon on insulator MOS transistors with nonrectangular-gate layouts. J. Electrochem. Soc. 153, G218 (2006).

    CAS 

    Google Scholar
     

  • 62.

    Ford, A. C. et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9, 360–365 (2009).

    CAS 
    ADS 

    Google Scholar
     



  • Source link