BusinessHigh-order superlattices by rolling up van der Waals heterostructures

High-order superlattices by rolling up van der Waals heterostructures

-


  • 1.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 

    Google Scholar
     

  • 2.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 3.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 4.

    Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • 5.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 

    Google Scholar
     

  • 6.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 7.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS 

    Google Scholar
     

  • 8.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical grapheme heterostructures. Science 335, 947–950 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • 9.

    Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 10.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 11.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 12.

    Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 13.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 14.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 15.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 16.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 17.

    Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 18.

    Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 19.

    Kim, K. K., Lee, H. S. & Lee, Y. H. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chem. Soc. Rev. 47, 6342–6369 (2018).

    CAS 

    Google Scholar
     

  • 20.

    Chen, P., Zhang, Z. W., Duan, X. D. & Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47, 3129–3151 (2018).

    CAS 

    Google Scholar
     

  • 21.

    Zhao, M. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 22.

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 23.

    Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 24.

    Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS 

    Google Scholar
     

  • 25.

    Shi, Y. M., Li, H. N. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    CAS 

    Google Scholar
     

  • 26.

    Yu, Y. F. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 27.

    Zhang, J. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 28, 1950–1956 (2016).

    CAS 

    Google Scholar
     

  • 28.

    Yang, T. F. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 29.

    Li, F. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 31, 1901351 (2019).


    Google Scholar
     

  • 30.

    Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    CAS 

    Google Scholar
     

  • 31.

    Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 32.

    Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 33.

    Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 34.

    Zhang, Z. W. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7, 737–744 (2020).

    CAS 

    Google Scholar
     

  • 35.

    Halim, U. et al. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat. Commun. 4, 2213 (2013).

    MathSciNet 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 36.

    Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 37.

    Ping, Y., Rocca, D. & Galli, G. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem. Soc. Rev. 42, 2437–2469 (2013).

    CAS 

    Google Scholar
     

  • 38.

    Yan, J., Thygesen, K. S. & Jacobsen, K. W. Nonlocal screening of plasmons in grapheneby semiconducting and metallic substrates: first-principles calculations. Phys. Rev. Lett. 106, 146803 (2011).

    ADS 

    Google Scholar
     

  • 39.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 40.

    Zeng, H. L. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Gonzalez, J. M. & Oleynik, I. I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 94, 125443 (2016).

    ADS 

    Google Scholar
     

  • 42.

    Heremans, J., Thrush, C. M., Lin, Y. M., Cronin, S. B. & Dresselhaus, M. S. Transport properties of antimony nanowires. Phys. Rev. B 63, 085406 (2001).

    ADS 

    Google Scholar
     

  • 43.

    Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • 44.

    Wang, X. L., Du, Y., Dou, S. X. & Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett. 108, 266806 (2012).

    ADS 

    Google Scholar
     

  • 45.

    Wang, X. J., Yates, J. R., Souza, I. & Vanderbilt, D. Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation. Phys. Rev. B 74, 195118 (2006).

    ADS 

    Google Scholar
     

  • 46.

    Qiao, Z. H. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    ADS 

    Google Scholar
     

  • 47.

    Khouri, T. et al. Linear magnetoresistance in a quasifree two-dimensional electron gas in an ultrahigh mobility GaAs quantum well. Phys. Rev. Lett. 117, 256601 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 48.

    Xiao, C. et al. Linear magnetoresistance induced by intra-scattering semiclassics of Bloch electrons. Phys. Rev. B 101, 201410 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 49.

    Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 50.

    Guo, C. H., Xu, J. Q., Rocca, D. & Ping, Y. Substrate screening approach for quasiparticle energies of two-dimensional interfaces with lattice mismatch. Phys. Rev. B 102, 205113 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 51.

    Zhu, J. T. et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 142, 16276–16284 (2020).

    CAS 

    Google Scholar
     

  • 52.

    Liu, H. et al. Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 12, 13174–13181 (2020).


    Google Scholar
     

  • 53.

    Zhang, C. X. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2017).


    Google Scholar
     

  • 54.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS 
    ADS 

    Google Scholar
     

  • 55.

    Gianozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).


    Google Scholar
     

  • 56.

    Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • 57.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 58.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS 

    Google Scholar
     

  • 59.

    Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    CAS 
    ADS 

    Google Scholar
     

  • 60.

    Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, 233103 (2006).

    ADS 

    Google Scholar
     

  • 61.

    Giacomini, R. & Martino, J. A. Modeling silicon on insulator MOS transistors with nonrectangular-gate layouts. J. Electrochem. Soc. 153, G218 (2006).

    CAS 

    Google Scholar
     

  • 62.

    Ford, A. C. et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9, 360–365 (2009).

    CAS 
    ADS 

    Google Scholar
     



  • Source link

    Latest news

    Liposuction In Texas- A Brief Description

    With the advancement in medical science and technology, we have cures for diseases that were once fatal to mankind....

    Why Japan’s Used Cars Are The Best

    With the aim of practicality and saving money, used cars are the best way to have a vehicle that...

    Voice Control In Mobile Apps – How To Do It

    Man has always aimed to make life comfortable and easy. When he wanted to travel from place to place,...

    Proven Digital Innovations to Scale-Up Business Operations

    Vast improvements in digital technology have propelled the competitive market to achieve business transformation and create more effective ways...

    Is Bitcoin A Burden For CPAs To Manage?

    Since the beginning of 2022, I have been pounding the pavement to talk with brick-and-mortar merchants about accepting...

    Must read

    Liposuction In Texas- A Brief Description

    With the advancement in medical science and technology, we...

    Why Japan’s Used Cars Are The Best

    With the aim of practicality and saving money, used...

    You might also likeRELATED
    Recommended to you