Genetic and epigenetic coordination of cortical interneuron development – Nature


  • 1.

    Ascoli, G. A. et al. Petilla terminology: Nomenclature of options of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Defelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14, 202–216 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Kepecs, A. & Fishell, G. Interneuron cell varieties are match to operate. Nature 505, 318–326 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Mayer, C. et al. Clonally associated forebrain interneurons disperse broadly throughout each purposeful areas and structural boundaries. Neuron 87, 989–998 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Harwell, C. C. et al. Wide dispersion and range of clonally associated inhibitory interneurons. Neuron 87, 999–1007 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Freund, T. F. Interneuron range collection: rhythm and temper in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons within the neocortex: from mobile properties to circuits. Neuron 91, 260–292 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Mi, D. et al. Early emergence of cortical interneuron range within the mouse embryo. Science 360, 81–85 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Wonders, C. P. et al. A spatial bias for the origins of interneuron subgroups inside the medial ganglionic eminence. Dev. Biol. 314, 127–136 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Batista-Brito, R. & Fishell, G. The developmental integration of cortical interneurons right into a purposeful community. Curr. Top. Dev. Biol. 87, 81–118 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Wang, Y. et al. Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J. Neurosci. 30, 5334–5345 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Pai, E. L.-L. et al. Mafb and c-Maf have prenatal compensatory and postnatal antagonistic roles in cortical interneuron destiny and operate. Cell Rep. 26, 1157–1173.e5 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Pai, E. L.-L. et al. Maf and Mafb management mouse pallial interneuron destiny and maturation via neuropsychiatric illness gene regulation. eLife 9, e54903 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Ma, S. et al. Chromatin potential recognized by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Sinnamon, J. R. et al. The accessible chromatin panorama of the murine hippocampus at single-cell decision. Genome Res. 29, 857–869 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Preissl, S. et al. Single-nucleus evaluation of accessible chromatin in growing mouse forebrain reveals cell-sort-particular transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Fang, R. et al. Comprehensive evaluation of single cell ATAC-seq knowledge with SnapATAC. Nat. Commun. 12, 1337 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Stuart, T. et al. Comprehensive integration of single-cell knowledge. Cell 177, 1888–1902.e21 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Barkas, N. et al. Joint evaluation of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695–698 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Miyoshi, G. & Fishell, G. GABAergic interneuron lineages selectively kind into particular cortical layers throughout early postnatal development. Cereb. Cortex 21, 845–852 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Batista-Brito, R. et al. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 63, 466–481 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Azim, E., Jabaudon, D., Fame, R. M. & MacKlis, J. D. SOX6 controls dorsal progenitor identification and interneuron range throughout neocortical development. Nat. Neurosci. 12, 1238–1247 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Au, E. et al. A modular gain-of-function strategy to generate cortical interneuron subtypes from ES cells. Neuron 80, 1145–1158 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Castro, D. M., de Veaux, N. R., Miraldi, E. R. & Bonneau, R. Multi-study inference of regulatory networks for extra correct fashions of gene regulation. PLoS Comput. Biol. 15, 1–22 (2019).

    Article  CAS  Google Scholar 

  • 26.

    Yadav, T., Quivy, J.-P. & Almouzni, G. Chromatin plasticity: a flexible panorama that underlies cell destiny and identification. Science 361, 1332–1336 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Ladstätter, S. & Tachibana, Okay. Genomic insights into chromatin reprogramming to totipotency in embryos. J. Cell Biol. 218, 70–82 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Harrington, A. J. et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors related to neurodevelopmental issues. eLife 5, e20059 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Cosgrove, D. et al. Genes influenced by MEF2C contribute to neurodevelopmental illness through gene expression adjustments that have an effect on a number of varieties of cortical excitatory neurons. Hum. Mol. Genet. 30, 961–970 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Monory, Okay. et al. The endocannabinoid system controls key epileptogenic circuits within the hippocampus. Neuron 51, 455–466 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Madisen, L. et al. A strong and excessive-throughput Cre reporting and characterization system for the entire mouse mind. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Mo, A. et al. Epigenomic signatures of neuronal range within the mammalian mind. Neuron 86, 1369–1384 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Vong, L. H., Ragusa, M. J. & Schwarz, J. J. Generation of conditional Mef2cloxP/loxP mice for temporal- and tissue-particular analyses. Genesis 43, 43–48 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Fogarty, M. et al. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron range within the grownup cortex. J. Neurosci. 27, 10935–10946 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Tirosh, I. et al. Single-cell RNA-seq helps a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Setty, M. et al. Characterization of cell destiny possibilities in single-cell knowledge with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Street, Okay. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Gabitto, M. I. et al. Characterizing chromatin panorama from mixture and single-cell genomic assays utilizing versatile period modeling. Nat. Commun. 11, 1–10 (2020).

    Article  CAS  Google Scholar 

  • 39.

    Heinz, S. et al. Simple combos of lineage-figuring out transcription elements prime cis-regulatory parts required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Stroud, H. et al. An exercise-mediated transition in transcription in early postnatal neurons. Neuron 107, 874–890.e8 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to grownup hemoglobin swap. Cell 173, 430–442.e17 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Zhu, Q., Liu, N., Orkin, S. H. & Yuan, G.-C. CUT&RUNTools: a versatile pipeline for CUT&RUN processing and footprint evaluation. Genome Biol. 20, 192 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Pliner, H. et al. Chromatin accessibility dynamics of myogenesis at single cell decision. Preprint at https://doi.org/10.1101/155473 (2017).

  • 44.

    Jackson, C. & Skok Gibbs, C. Inferelator instance knowledge and scripts. https://doi.org/10.5281/zenodo.3355524 (2019).



  • Source link