Frequency ratio measurements at 18-digit accuracy using an optical clock network

0
38


  • 1.

    Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 2.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Nemitz, N. et al. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time. Nat. Photon. 10, 258–261 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Dörscher, S. et al. Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock. Preprint at https://arXiv.org/abs/2009.05470 (2020).

  • 6.

    Brewer, S. M. et al. An 27Al+ quantum-logic clock with systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Van Tilburg, K., Leefer, N., Bougas, L. & Budker, D. Search for ultralight scalar dark matter with atomic spectroscopy. Phys. Rev. Lett. 115, 011802 (2015).

    ADS 

    Google Scholar
     

  • 10.

    Hees, A., Guéna, J., Abgrall, M., Bize, S. & Wolf, P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117, 061301 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Foreman, S. M. et al. Coherent optical phase transfer over a 32-km fiber with 1s instability at 10−17. Phys. Rev. Lett. 99, 153601 (2007).

    ADS 

    Google Scholar
     

  • 12.

    Sinclair, L. C. et al. Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency. Phys. Rev. Lett. 120, 050801 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Preprint at https://arXiv.org/abs/2006.01306 (2020).

  • 14.

    Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Nicholson, T. L. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Huntemann, N., Sanner, C., Lipphardt, B., Tamm, Chr. & Peik, E. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Godun, R. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Takamoto, M. et al. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications. C.R. Phys. 16, 489–498 (2015).

    CAS 

    Google Scholar
     

  • 22.

    Tyumenev, R. et al. Comparing a mercury optical lattice clock with microwave and optical frequency standards. New J. Phys. 18, 113002 (2016).

    ADS 

    Google Scholar
     

  • 23.

    Ohmae, N., Bregolin, F., Nemitz, N. & Katori, H. Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop. Opt. Express 28, 15112–15121 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Lange, R. et al. Improved limits for violations of local position invariance from atomic clock comparisons. Preprint at https://arXiv.org/abs/2010.06620 (2020).

  • 25.

    Riehle, F. Optical clock networks. Nat. Photon. 11, 25–31 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Delehaye, M. & Lacroûte, C. Single-ion, transportable optical atomic clocks. J. Mod. Opt. 65, 622–639 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 28.

    Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Dehmelt, H. G. Monoion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31, 83–87 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Hall, J. L., Zhu, M. & Buch, P. Prospects for using laser-prepared atomic fountains for optical frequency standards applications. J. Opt. Soc. Am. B 6, 2194–2205 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019); correction 3, 85 (2020).


    Google Scholar
     

  • 34.

    Leopardi, H. et al. Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability. Optica 4, 879–885 (2017).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 35.

    Fortier, T. M., Bartels, A. & Diddams, S. A. Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons. Opt. Lett. 31, 1011–1013 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Deschênes, J.-D. et al. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6, 021016 (2016).


    Google Scholar
     

  • 37.

    van Westrum, D. Geodetic Survey of NIST and JILA Clock Laboratories. NOAA Technical Report NOS NGS 77 (NOAA, 2019).

  • 38.

    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman & Hall/CRC Texts in Statistical Science) (CRC Press, 2014).

  • 39.

    Koepke, A., Lafarge, T., Possolo, A. & Toman, B. Consensus building for interlaboratory studies, key comparisons, and meta-analysis. Metrologia 54, S34–S62 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Stalnaker, J. E. et al. Optical-to-microwave frequency comparison with fractional uncertainty of 10−15. Appl. Phys. B 89, 167–176 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Rosenband, T. et al. Alpha-dot or not: comparison of two single atom optical clocks. In Proceedings of the 7th Symposium on Frequency Standards and Metrology (ed. Maleki, L.) 20–33 (World Scientific, 2009).

  • 42.

    Riehle, F. Towards a redefinition of the second based on optical atomic clocks. C.R. Phys. 16, 506–515 (2015).

    CAS 

    Google Scholar
     

  • 43.

    Gill, P. When should we change the definition of the second? Phil. Trans. R. Soc. A 369, 4109–4130 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Campbell, G. K. et al. The absolute frequency of the 87 Sr optical clock transition. Metrologia 45, 539–548 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Lemke, N. D. et al. Spin-1/2 optical lattice clock. Phys. Rev. Lett. 103, 063001 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Pizzocaro, M. et al. Absolute frequency measurement of the 1S03P0 transition of 171Yb. Metrologia 54, 102–112 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Lodewyck, J. et al. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock. Metrologia 53, 1123–1130 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Grebing, C. et al. Realization of a timescale with an accurate optical lattice clock. Optica 3, 563–569 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    McGrew, W. F. et al. Towards the optical second: verifying optical clocks at the SI limit. Optica 6, 448–454 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Akamatsu, D. et al. Frequency ratio measurement of 171 Yb and 87Sr optical lattice clocks. Opt. Express 22, 7898–7905 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Hachisu, H., Petit, G., Nakagawa, F., Hanado, Y. & Ido, T. SI-traceable measurement of an optical frequency at the low 10−16 level without a local primary standard. Opt. Express 25, 8511–8523 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Kim, H. et al. Improved absolute frequency measurement of the 171Yb optical lattice clock at KRISS relative to the SI second. Jpn. J. Appl. Phys. 56, 050302 (2017).

    ADS 

    Google Scholar
     

  • 53.

    Centers, G. P. et al. Stochastic fluctuations of bosonic dark matter. Preprint at https://arXiv.org/abs/1905.13650 (2019).

  • 54.

    Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

    ADS 

    Google Scholar
     

  • 55.

    Ma, L.-S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Newbury, N. R., Williams, P. A. & Swann, W. C. Coherent transfer of an optical carrier over 251 km. Opt. Lett. 32, 3056–3058 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Nemitz, N., Jørgensen, A. A., Yanagimoto, R., Bregolin, F. & Katori, H. Modeling light shifts in optical lattice clocks. Phys. Rev. A 99, 033424 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Brown, R. C. et al. Hyperpolarizability and operational magic wavelength in an optical lattice clock. Phys. Rev. Lett. 119, 253001 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Katori, H., Ovsiannikov, V. D., Marmo, S. I. & Palchikov, V. G. Strategies for reducing the light shift in atomic clocks. Phys. Rev. A 91, 052503 (2015).

    ADS 

    Google Scholar
     

  • 60.

    Mohr, P. J., Newell, D. B. & Taylor, B. N. Codata recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016).

    ADS 

    Google Scholar
     

  • 61.

    Su, Y.-S. & Yajima, M. R2jags: using R to run ‘JAGS’. https://cran.r-project.org/web/packages/R2jags/index.html (2015).

  • 62.

    Geweke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting (eds Bernado, J. M. et al) 641–649 (Clarendon, 1992).

  • 63.

    Fuller, W. A. Measurement Error Models (Wiley & Sons, 1987).

  • 64.

    Carroll, R. J., Ruppert, D., Stefanski, L. A. & Crainiceanu, C. M. Measurement Error in Nonlinear Models — A Modern Perspective 2nd edn (Chapman & Hall/CRC Texts in Statistical Science) (CRC Press, 2006).

  • 65.

    Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

    ADS 
    CAS 

    Google Scholar
     



  • Source link