Home Business Extensional tectonics and two-stage crustal accretion at oceanic transform faults

Extensional tectonics and two-stage crustal accretion at oceanic transform faults

0

[ad_1]

  • 1.

    Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).

    ADS 

    Google Scholar
     

  • 2.

    Menard, H. W. Extension of northeastern-Pacific fracture zones. Science 155, 72–74 (1967).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Sykes, L. R. Mechanism of earthquakes and nature of faulting on the mid‐oceanic ridges. J. Geophys. Res. 72, 2131–2153 (1967).

    ADS 

    Google Scholar
     

  • 4.

    Sandwell, D. T. Thermomechanical evolution of oceanic fracture zones. J. Geophys. Res. 89, 11401–11413 (1984).

    ADS 

    Google Scholar
     

  • 5.

    Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    ADS 

    Google Scholar
     

  • 7.

    Morgan, J. P. & Parmentier, E. M. Lithospheric stress near a ridge‐transform intersection. Geophys. Res. Lett. 11, 113–116 (1984).

    ADS 

    Google Scholar
     

  • 8.

    Fox, P. J. & Gallo, D. G. A tectonic model for ridge transform ridge plate boundaries – implications for the structure of oceanic lithosphere. Tectonophysics 104, 205–242 (1984).

    ADS 

    Google Scholar
     

  • 9.

    Fornari, D. J. et al. Structure and topography of the Siqueiros transform fault system: evidence for the development of intra-transform spreading centers. Mar. Geophys. Res. 11, 263–299 (1989).


    Google Scholar
     

  • 10.

    Gregg, P. M., Lin, J., Behn, M. D. & Montesi, L. G. J. Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature 448, 183–187 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Searle, R. C., Thomas, M. V. & Jones, E. J. W. Morphology and tectonics of the Romanche transform and its environs. Mar. Geophys. Res. 16, 427–453 (1994).


    Google Scholar
     

  • 12.

    Karson, J. A. & Dick, H. J. B. Tectonics of ridge-transform intersections at the Kane fracture zone. Mar. Geophys. Res. 6, 51–98 (1983).


    Google Scholar
     

  • 13.

    Gallo, D. G., Fox, P. J. & Macdonald, K. C. A Seabeam investigation of the Clipperton transform fault: the morphotectonic expression of a east slipping transform boundary. J. Geophys. Res. 91, 3455–3467 (1986).

    ADS 

    Google Scholar
     

  • 14.

    Barth, G. A., Kastens, K. A. & Klein, E. M. The origin of bathymetric highs at ridge-transform intersections: a multi-disciplinary case study at the Clipperton fracture zone. Mar. Geophys. Res. 16, 1–50 (1994).


    Google Scholar
     

  • 15.

    Davis, E. E. & Lister, C. R. B. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett. 21, 405–413 (1974).

    ADS 

    Google Scholar
     

  • 16.

    Behn, M. D., Boettcher, M. S. & Hirth, G. Thermal structure of oceanic transform faults. Geology 35, 307–310 (2007).

    ADS 

    Google Scholar
     

  • 17.

    McKenzie, D. Finite deformation during fluid flow. Geophys. J. R. Astron. Soc. 58, 689–715 (1979).

    ADS 
    MATH 

    Google Scholar
     

  • 18.

    Roland, E., Behn, M. D. & Hirth, G. Thermal‐mechanical behavior of oceanic transform faults: implications for the spatial distribution of seismicity. Geochem. Geophys. Geosyst. 11, Q07001 (2010).

    ADS 

    Google Scholar
     

  • 19.

    Rüpke, L. H. & Hasenclever, J. Global rates of mantle serpentinization and H2 production at oceanic transform faults in 3-D geodynamic models. Geophys. Res. Lett. 44, 6726–6734 (2017).

    ADS 

    Google Scholar
     

  • 20.

    McGuire, J. et al. Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nat. Geosci. 5, 336–341 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Braunmiller, J. & Nabelek, J. Segmentation of the Blanco transform fault zone from earthquake analysis: complex tectonics of an oceanic transform fault. J. Geophys. Res. 113, B07108 (2008).

    ADS 

    Google Scholar
     

  • 22.

    Abercrombie, R. E. & Ekström, G. Earthquake slip on oceanic transform faults. Nature 410, 74–77 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Grevemeyer, I. Upper mantle structure beneath the Mid-Atlantic Ridge from regional waveform modeling. Bull. Seismol. Soc. Am. 110, 18–25 (2020).


    Google Scholar
     

  • 24.

    Wolfe, C. J., Bergman, E. A. & Solomon, S. C. Oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the adjacent lithosphere. J. Geophys. Res. 98, 16187–16211 (1993).

    ADS 

    Google Scholar
     

  • 25.

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow spreading class of ocean ridge. Nature 426, 405–412 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Rosendahl, B. P. Architecture of continental rifts with special reference to East Africa. Annu. Rev. Earth Planet. Sci. 15, 445–503 (1987).

    ADS 

    Google Scholar
     

  • 27.

    Lin, J. & Parmentier, E. M. Mechanisms of lithospheric extension at mid‐ocean ridges. Geophys. J. Int. 96, 1–22 (1989).

    ADS 

    Google Scholar
     

  • 28.

    Wilcock, W. S. D., Purdy, G. M. & Solomon, S. C. Microearthquake evidence for extension across the Kane transform fault. J. Geophys. Res. 95, 15439–15462 (1990).

    ADS 

    Google Scholar
     

  • 29.

    Collette, B. J. Thermal contraction joints in a spreading seafloor as origin of fracture zones. Nature 251, 299–300 (1974).

    ADS 

    Google Scholar
     

  • 30.

    Turcotte, D. L. Are transform faults thermal contraction cracks? J. Geophys. Res. 79, 2573–2577 (1974).

    ADS 

    Google Scholar
     

  • 31.

    Hey, R. N., Menard, H. W., Atwater, T. M. & Caress, D. W. Changes in direction of seafloor spreading revisited. J. Geophys. Res. 93, 2803–2812 (1988).

    ADS 

    Google Scholar
     

  • 32.

    Pockalny, R. A., Fox, P. J., Fornari, D. J., Macdonald, K. C. & Perfit, M. R. Tectonic reconstruction of the Clipperton and Siqueiros fracture zones: evidence and consequences of plate motion change for the last 3 Myr. J. Geophys. Res. 102, 3167–3181 (1997).

    ADS 

    Google Scholar
     

  • 33.

    Bercovici, D., Dick, H. & Wagner, T. Nonlinear viscoelasticity and the formation of transverse ridges. J. Geophys. Res. 97, 14195–14206 (1992).

    ADS 

    Google Scholar
     

  • 34.

    Kelley, D. S. et al. An off-axis hydrothermal-vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Lonsdale, P. Tectonic and magmatic ridges in the Eltanin fault system, South Pacific. Mar. Geophys. Res. 8, 203–242 (1986).


    Google Scholar
     

  • 36.

    Barth, G. A. Oceanic crust thickens approaching the Clipperton fracture zone. Mar. Geophys. Res. 16, 51–64 (1994).


    Google Scholar
     

  • 37.

    Lin, J. & Morgan, J. P. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett. 19, 13–16 (1992).

    ADS 

    Google Scholar
     

  • 38.

    Macdonald, K. C. & Fox, P. J. Overlapping spreading centres: new accretion geometry on the East Pacific Rise. Nature 302, 55–58 (1983).

    ADS 

    Google Scholar
     

  • 39.

    Tucholke, B. E. & Lin, J. A geological model for the structure of ridge segments in slow spreading ocean crust. J. Geophys. Res. 99, 11937–11958 (1994).

    ADS 

    Google Scholar
     

  • 40.

    Fox, P. J. et al. The geology of the oceanographer transform: the transform domain. Mar. Geophys. Res. 7, 329–358 (1985).


    Google Scholar
     

  • 41.

    Caress, D. W. & Chayes, D. N. MB-System: mapping the seafloor, http://www.mbari.org/products/research-software/mb-system (2017).

  • 42.

    Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos 94, 409 (2013).

    ADS 

    Google Scholar
     

  • 43.

    Mishra, J. K. & Gordon, R. G. The rigid-plate and shrinking-plate hypotheses: implications for the azimuths of transform faults. Tectonics 35, 1827–1842 (2016).

    ADS 

    Google Scholar
     

  • 44.

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    ADS 

    Google Scholar
     

  • 45.

    Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

    ADS 

    Google Scholar
     

  • 46.

    Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2004).

  • 47.

    Glerum, A., Thieulot, C., Fraters, M., Blom, C. & Spakman, W. Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction. Solid Earth 9, 267–294 (2018).

    ADS 

    Google Scholar
     

  • 48.

    Jarvis, G. T. & McKenzie, D. P. Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett. 48, 42–52 (1980).

    ADS 

    Google Scholar
     

  • 49.

    Ligi, M., Bonatti, E., Gasperini, L. & Poliakov, A. N. B. Oceanic broad multifault transform plate boundaries. Geology 30, 11–14 (2002).

    ADS 

    Google Scholar
     

  • 50.

    Harmon, N. et al. Marine geophysical investigation of the Chain fracture zone in the equatorial Atlantic from the PI-LAB experiment. J. Geophys. Res. 123, 11016–11030 (2018).

    ADS 

    Google Scholar
     

  • 51.

    Reston, T. J. et al. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S. Earth Planet. Sci. Lett. 200, 255–269 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Bourgois, J. et al. Glacial‐interglacial trench supply variation, spreading‐ridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45–48°S). J. Geophys. Res. 105, 8355–8386 (2000).

    ADS 

    Google Scholar
     

  • 53.

    Sato, T. et al. Magmatic activities on the Southwest Indian Ridge between 35°E and 40°E, the closest segment to the Marion hotspot. Geochem. Geophys. Geosyst. 14, 5286–5307 (2013).

    ADS 

    Google Scholar
     

  • [ad_2]

    Source link