BusinessExpansible residence decentralizes immune homeostasis

Expansible residence decentralizes immune homeostasis

-


  • 1.

    Höfer, T., Busch, K., Klapproth, K. & Rodewald, H.-R. Fate mapping and quantitation of hematopoiesis in vivo. Annu. Rev. Immunol. 34, 449–478 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 2.

    Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Janeway, C. A., Jr et al. Modes of cell:cell communication in the immune system. J. Immunol. 135, 739s–742s (1985).

    PubMed 

    Google Scholar
     

  • 4.

    Qi, H., Kastenmüller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Stark, R. et al. TRM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol. 3, eaau1022 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Germain, R. N. & Huang, Y. ILC2s – resident lymphocytes pre-adapted to a specific tissue or migratory effectors that adapt to where they move? Curr. Opin. Immunol. 56, 76–81 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Klicznik, M. M. et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 4, eaav8995 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Carbone, F. R. & Gebhardt, T. Should I stay or should I go–reconciling clashing perspectives on CD4+ tissue-resident memory T cells. Sci. Immunol. 4, eaax5595 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 18.

    Slütter, B. et al. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2, eaag2031 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Stockinger, B., Barthlott, T. & Kassiotis, G. The concept of space and competition in immune regulation. Immunology 111, 241–247 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Schenkel, J. M. et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J. Immunol. 196, 3920–3926 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Vezys, V. et al. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457, 196–199 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Huster, K. M. et al. Cutting edge: memory CD8 T cell compartment grows in size with immunological experience but nevertheless can lose function. J. Immunol. 183, 6898–6902 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and maintenance of the macrophage niche. Immunity 52, 434–451 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Schmidt-Rhaesa, A. The Evolution of Organ Systems (Oxford Univ. Press, 2007).

  • 29.

    Pabst, O., Herbrand, H., Bernhardt, G. & Förster, R. Elucidating the functional anatomy of secondary lymphoid organs. Curr. Opin. Immunol. 16, 394–399 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Iwasaki, A. Exploiting mucosal immunity for antiviral vaccines. Annu. Rev. Immunol. 34, 575–608 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Amsen, D., van Gisbergen, K. P. J. M., Hombrink, P. & van Lier, R. A. W. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat. Immunol. 19, 538–546 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Behr, F. M. et al. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol. 21, 1070–1081 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl Acad. Sci. USA 98, 8744–8749 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Tucker, C. G. et al. Adoptive T cell therapy with IL-12-preconditioned low-avidity T cells prevents exhaustion and results in enhanced T cell activation, enhanced tumor clearance, and decreased risk for autoimmunity. J. Immunol. 205, 1449–1460 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     



  • Source link

    Latest news

    A Problem With Bitcoin’s Lightning Network Liquidity And Ideas To Address It

    This is an opinion editorial by Shinobi, a self-taught educator in the Bitcoin space and tech-oriented Bitcoin podcast...

    DuckDuckGo Isn’t as Private as You Think

    After another week of dismally tragic news and moral failures by the powerful, it's good to know that...

    ‘Flash Droughts’ Are the Midwest’s Next Big Climate Threat

    Flash droughts are also a global problem, with Brazil, India, and multiple countries in Africa facing the worst...

    Sequoia is the latest VC firm telling you to take the downturn seriously – TechCrunch

    Sequoia takes things seriously. The storied venture firm is known to react to macroeconomic events with grand memos...

    Must read

    You might also likeRELATED
    Recommended to you