Estimating a social cost of carbon for global energy consumption – Nature


  • 1.

    Interagency Working Group on Socal Cost of Carbon Social Cost of Carbon for Regulatory Impact Analysis—beneath Executive Order 12866 Technical Report (United States Government, 2010).

  • 2.

    Revesz, R. L. et al. Global warming: enhance financial fashions of local weather change. Nature 508, 173–175 (2014).

    PubMed  Article  Google Scholar 

  • 3.

    Pizer, W. et al. Using and bettering the social cost of carbon. Science 346, 1189–1190 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Nordhaus, W. D. An optimum transition path for controlling greenhouse gases. Science 258, 1315–1319 (1992).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Greenstone, M., Kopits, E. & Wolverton, A. Developing a social cost of carbon for US regulatory evaluation: a methodology and interpretation. Rev. Environ. Econ. Policy 7, 23–46 (2013).

    Article  Google Scholar 

  • 6.

    National Academies of Sciences, Engineering, and Medicine Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide (The National Academies Press, 2017).

  • 7.

    Diaz, D. & Moore, F. Quantifying the financial dangers of local weather change. Nat. Clim. Change 7, 774–782 (2017).

    ADS  Article  Google Scholar 

  • 8.

    Anthoff, D. & Tol, R. S. The uncertainty in regards to the social cost of carbon: a decomposition evaluation utilizing FUND. Climatic Change 117, 515–530 (2013).

    ADS  Article  Google Scholar 

  • 9.

    Stern, N. Stern Review Report on the Economics of Climate Change (HM Treasury, 2006).

  • 10.

    Waldhoff, S., Anthoff, D., Rose, S. & Tol, R. S. The marginal injury prices of completely different greenhouse gases: an utility of FUND. Economics 8, 1–33 (2014).

  • 11.

    Nordhaus, W. D. Estimates of the Social Cost of Carbon: Background and Results from the Rice-2011 Model Technical Report (National Bureau of Economic Research, 2011).

  • 12.

    Pindyck, R. S. Climate change coverage: what do the fashions inform us? J. Econ. Lit. 51, 860–872 (2013).

    Article  Google Scholar 

  • 13.

    Burke, M. et al. Opportunities for advances in local weather change economics. Science 352, 292–293 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Adler, M. et al. Priority for the more severe-off and the social cost of carbon. Nat. Clim. Change 7, 443–449 (2017).

    ADS  Article  Google Scholar 

  • 15.

    Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of local weather change impacts on agriculture implies greater social cost of carbon. Nat. Commun. 8, 1607 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Diaz, D. B. Evaluating the Key Drivers of the US Government’s Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study of Climate Impacts in DICE, FUND, and PAGE (Stanford University Policy and Economics Research Roundtable, 2014).

  • 17.

    Carleton, T. A. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits Working Paper 27599 (National Bureau of Economic Research, 2020); http://www.nber.org/papers/w27599

  • 18.

    Hsiang, S. et al. Estimating financial injury from local weather change within the United States. Science 356, 1362–1369 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Taylor, Okay. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS  Article  Google Scholar 

  • 20.

    Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using climate knowledge and local weather mannequin output in financial analyses of local weather change. Rev. Environ. Econ. Policy 7, 181–198 (2013).

    Article  Google Scholar 

  • 21.

    Kopp, R., Hsiang, S. & Oppenheimer, M. Empirically calibrating injury capabilities and contemplating stochasticity when built-in evaluation fashions are used as determination instruments. In Impacts World 2013 Conference Proc. 834–843 (Potsdam Institute for Climate Impact Research, 2013).

  • 22.

    O’Neill, B. C. et al. A brand new situation framework for local weather change analysis: the idea of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Rasmussen, D. J. & Kopp, R. E. in Economic Risks of Climate Change: An American Prospectus 219–248 (Columbia Univ. Press, 2015); https://cup.columbia.edu/book/economic-risks-of-climate-change/9780231174565

  • 24.

    Hsiang, S. Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016).

    Article  Google Scholar 

  • 25.

    Smith, C. J. et al. FAIR v1. 3: a easy emissions-primarily based impulse response and carbon cycle mannequin. Geosci. Model Dev. 11, 2273–2297 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and financial progress: proof from the final half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

    Article  Google Scholar 

  • 27.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear impact of temperature on financial manufacturing. Nature 527, 235–239 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Moore, F. C. & Diaz, D. B. Temperature impacts on financial progress warrant stringent mitigation coverage. Nat. Clim. Change 5, 127–131 (2015).

    ADS  Article  Google Scholar 

  • 29.

    Ricke, Okay., Drouet, L., Caldeira, Okay. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Deschênes, O. & Greenstone, M. Climate change, mortality, and adaptation: proof from annual fluctuations in climate within the US. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).

    Article  Google Scholar 

  • 31.

    Davis, L. W. & Gertler, P. J. Contribution of air con adoption to future energy use beneath global warming. Proc. Natl Acad. Sci. USA 112, 5962–5967 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Auffhammer, M., Baylis, P. & Hausman, C. H. Climate change is projected to have extreme impacts on the frequency and depth of peak electrical energy demand throughout the United States. Proc. Natl Acad. Sci. USA 114, 1886–1891 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Wenz, L., Levermann, A. & Auffhammer, M. North–south polarization of European electrical energy consumption beneath future warming. Proc. Natl Acad. Sci. USA 114, E7910–E7918 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Auffhammer, M. Climate Adaptive Response Estimation: Short and Long Run Impacts of Climate Change on Residential Electricity and Natural Gas Consumption utilizing Big Data Technical Report (National Bureau of Economic Research, 2018).

  • 35.

    Hadley, S. W., Erickson, D. J., Hernandez, J. L., Broniak, C. T. & Blasing, T. Responses of energy use to local weather change: a local weather modeling examine. Geophys. Res. Lett. 33, L17703 (2006).

    ADS  Article  CAS  Google Scholar 

  • 36.

    Zhou, Y., Eom, J. & Clarke, L. The impact of global local weather change, inhabitants distribution, and local weather mitigation on constructing energy use within the US and China. Climatic Change 119, 979–992 (2013).

    ADS  Article  Google Scholar 

  • 37.

    Isaac, M. & Van Vuuren, D. P. Modeling global residential sector energy demand for heating and air con within the context of local weather change. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  • 38.

    Clarke, L. et al. Effects of lengthy-time period local weather change on global constructing energy expenditures. Energy Econ. 72, 667–677 (2018).

    Article  Google Scholar 

  • 39.

    Gollier, C. & Hammitt, J. Okay. The lengthy-run low cost charge controversy. Annu. Rev. Resour. Econ. 6, 273–295 (2014).

    Article  Google Scholar 

  • 40.

    Bauer, M. & Rudebusch, G. D. The Rising Cost of Climate Change: Evidence from the Bond Market (Federal Reserve Bank of San Francisco, 2020).

  • 41.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year excessive-decision global dataset of meteorological forcings for land floor modeling. J. Clim. 19, 3088–3111 (2006).

    ADS  Article  Google Scholar 

  • 42.

    World Energy Balances (Edition 2017) International Energy Agency, 2018); https://www.oecd-ilibrary.org/content/data/9ddec1c1-en

  • 43.

    Rasmussen, D. J., Meinshausen, M. & Kopp, R. E. Probability-weighted ensembles of US county-degree local weather projections for local weather threat evaluation. J. Appl. Meteorol. Climatol. 55, 2301–2322 (2016).

    ADS  Article  Google Scholar 

  • 44.

    McNeil, M. A. & Letschert, V. E. Modeling diffusion of electrical home equipment within the residential sector. Energy Build. 42, 783–790 (2010).

    Article  Google Scholar 

  • 45.

    Legros, G. et al. The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa (World Health Organization, 2009).

  • 46.

    Almond, D., Chen, Y., Greenstone, M. & Li, H. Winter heating or clear air? Unintended impacts of China’s Huai River coverage. Am. Econ. Rev. 99, 184–190 (2009).

    Article  Google Scholar 

  • 47.

    Ramsey, F. P. A mathematical concept of saving. Econ. J. 38, 543–559 (1928).

    Article  Google Scholar 

  • 48.

    Tong, D. et al. Committed emissions from current energy infrastructure jeopardize 1.5 °C local weather goal. Nature 572, 373–377 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Woodard, D. L., Davis, S. J. & Randerson, J. T. Economic carbon cycle feedbacks might offset extra warming from pure feedbacks. Proc. Natl Acad. Sci. USA 116, 759–764 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Global Administrative Areas GADM Database of Global Administrative Areas, Version 2.0 (University of California, Berkeley, Museum of Vertebrate Zoology, International Rice Research Institute, University of California, Davis, 2012); www.gadm.org/data.html

  • 51.

    Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. Technical observe: Bias correcting local weather mannequin simulated each day temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).

    ADS  Article  Google Scholar 

  • 52.

    Riahi, Okay. et al. RCP 8.5—a situation of comparatively excessive greenhouse gasoline emissions. Climatic Change 109, 33–57 (2011).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Thomson, A. M. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109, 77 (2011).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Van Vuuren, D. P. et al. The consultant focus pathways: an summary. Climatic Change 109, 5 (2011).

    ADS  Article  Google Scholar 

  • 55.

    Tebaldi, C. & Knutti, R. The use of the multi-mannequin ensemble in probabilistic local weather projections. Phil. Trans. R. Soc. Lond. A 365, 2053–2075 (2007).

    ADS  MathSciNet  Google Scholar 

  • 56.

    Riahi, Okay. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gasoline emissions implications: an summary. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  • 57.

    Samir, Okay. & Lutz, W. The human core of the shared socioeconomic pathways: inhabitants eventualities by age, intercourse and degree of training for all international locations to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  Google Scholar 

  • 58.

    Cuaresma, J. C. Income projections for local weather change analysis: a framework primarily based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).

    Article  Google Scholar 

  • 59.

    Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term financial progress projections within the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).

    Article  Google Scholar 

  • 60.

    IIASA Energy Program SSP Database, Version 1.1 Data set Technical Report (National Bureau of Economic Research, 2016); https://tntcat.iiasa.ac.at/SspDb

  • 61.

    Bright, E. A., Coleman, P. R., Rose, A. N. & Urban, M. L. LandScan 2011 (2012); https://web.ornl.gov/sci/landscan/index.shtml

  • 62.

    Jiang, L. & O’Neill, B. C. Global urbanization projections for the shared socioeconomic pathways. Glob. Environ. Change 42, 193–199 (2017).

    Article  Google Scholar 

  • 63.

    Jones, B. & O’Neill, B. C. Spatially express global inhabitants eventualities in step with the shared socioeconomic pathways. Environ. Res. Lett. 11, 084003 (2016).

    ADS  Article  Google Scholar 

  • 64.

    Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA. (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018).

  • 65.

    Carleton, T. A. & Hsiang, S. M. Social and financial impacts of local weather. Science 353, aad9837 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 66.

    Auffhammer, M. & Aroonruengsawat, A. Simulating the impacts of local weather change, costs and inhabitants on California’s residential electrical energy consumption. Climatic Change 109, 191–210 (2011).

    ADS  Article  Google Scholar 

  • 67.

    Graff Zivin, J. & Neidell, M. Temperature and the allocation of time: implications for local weather change. J. Labor Econ. 32, 1–26 (2014).

    Article  Google Scholar 

  • 68.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature results point out extreme damages to US crop yields beneath local weather change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

  • 70.

    Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response illustration of the global close to-floor air temperature and atmospheric focus response to carbon dioxide emissions. Atmos. Chem. Phys. 17, 7213–7228 (2017).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Board of Governors of the US Federal Reserve System 10-year Treasury Inflation-indexed Security, Constant Maturity (DFII10) Technical Report (FRED, Federal Reserve Bank of St. Louis, 2020); https://fred.stlouisfed.org/series/DFII10

  • 72.

    Carleton, T. & Greenstone, M. Updating the United States Government’s Social Cost of Carbon Working Paper (Univ. Chicago, Becker Friedman Institute for Economics, 2021).

  • 73.

    Nordhaus, W. A Question of Balance: Weighing the Options on Global Warming Policies (Yale Univ. Press, 2014).

  • 74.

    Arrow, Okay. J. Global local weather change: a problem to coverage. The Economists’ Voice 4, 1–5 (2007).

  • 75.

    Dasgupta, P. The Stern evaluation’s economics of local weather change. Natl Inst. Econ. Rev. 199, 4–7 (2007).

    Article  Google Scholar 

  • 76.

    Dasgupta, P. Discounting local weather change. J. Risk Uncertain. 37, 141–169 (2008).

    MATH  Article  Google Scholar 

  • 77.

    Hall, R. E. Reconciling cyclical actions within the marginal worth of time and the marginal product of labor. J. Polit. Econ. 117, 281–323 (2009).

    Article  Google Scholar 

  • 78.

    Weitzman, M. L. A evaluation of the Stern evaluation on the economics of local weather change. J. Econ. Lit. 45, 703–724 (2007).

    Article  Google Scholar 

  • 79.

    Weitzman, M. L. On modeling and decoding the economics of catastrophic local weather change. Rev. Econ. Stat. 91, 1–19 (2009).

    Article  Google Scholar 

  • 80.

    McGrath, G. Natural gasoline-fired electrical energy conversion effectivity grows as coal stays steady. Today in Energy https://www.eia.gov/todayinenergy/detail.php?id=32572 (2017).

  • 81.

    Emission components for greenhouse gasoline inventories.US Environmental Protection Agency https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf (2018).

  • 82.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. Okay. & Meyer L. A.) (IPCC, 2014).



  • Source link