All-sky dynamical response of the Galactic halo to the Large Magellanic Cloud

0
44


  • 1.

    Laporte, C. F. P., Gómez, F. A., Besla, G., Johnston, K. V. & Garavito-Camargo, N. Response of the Milky Way’s disc to the Large Magellanic Cloud in a first infall scenario. Mon. Not. R. Astron. Soc. 473, 1218–1230 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Garavito-Camargo, N. et al. Hunting for the dark matter wake induced by the Large Magellanic Cloud. Astrophys. J. 884, 51 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Petersen, M. S. & Peñarrubia, J. Reflex motion in the Milky Way stellar halo resulting from the Large Magellanic Cloud infall. Mon. Not. R. Astron. Soc. 494, L11–L16 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Erkal, D., Belokurov, V. & Parkin, D. L. Equilibrium models of the Milky Way mass are biased high by the LMC. Mon. Not. R. Astron. Soc. 498, 5574–5580 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Cunningham, E. C. et al. Quantifying the stellar halo’s response to the LMC’s infall with spherical harmonics. Astrophys. J. 898, 4 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Tamfal, T. et al. Revisiting dynamical friction: the role of global modes and local wakes. Preprint at https://arxiv.org/abs/2007.13763 (2020).

  • 7.

    Garavito-Camargo, N. et al. Quantifying the impact of the Large Magellanic Cloud on the structure of the Milky Way’s dark matter halo using basis function expansions. Preprint at https://arxiv.org/abs/2010.00816 (2020).

  • 8.

    Lindegren, L. et al. Gaia Early Data Release 3: the astrometric solution. Preprint at https://arxiv.org/abs/2012.03380 (2020).

  • 9.

    Schlafly, E. F., Meisner, A. M. & Green, G. M. The unWISE Catalog: two billion infrared sources from five years of WISE imaging. Astrophys. J. Suppl. Ser. 240, 30 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Belokurov, V. et al. The Pisces Plume and the Magellanic wake. Mon. Not. R. Astron. Soc. 488, L47–L52 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J. & Alcock, C. Third-epoch Magellanic Cloud proper motions. I. Hubble Space Telescope/WFC3 data and orbit implications. Astrophys. J. 764, 161 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Chandrasekhar, S. Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys. J. 97, 255–262 (1943).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 14.

    Gómez, F. A. et al. And yet it moves: the dangers of artificially fixing the Milky Way center of mass in the presence of a massive Large Magellanic Cloud. Astrophys. J. 802, 128 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Williams, A. A., Belokurov, V., Casey, A. R. & Evans, N. W. On the run: mapping the escape speed across the Galaxy with SDSS. Mon. Not. R. Astron. Soc. 468, 2359–2371 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Deason, A. J. et al. The local high-velocity tail and the Galactic escape speed. Mon. Not. R. Astron. Soc. 485, 3514–3526 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Besla, G. et al. Are the Magellanic clouds on their first passage about the Milky Way? Astrophys. J. 668, 949–967 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Rybizki, J. et al. A Gaia DR2 Mock Stellar Catalog. Publ. Astron. Soc. Pac. 130, 074101 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Weinberg, M. D. Dynamics of an interacting luminous disc, dark halo and satellite companion. Mon. Not. R. Astron. Soc. 299, 499–514 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Furlanetto, S. R. & Loeb, A. Constraining the collisional nature of the dark matter through observations of gravitational wakes. Astrophys. J. 565, 854–866 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Lancaster, L. et al. Dynamical friction in a fuzzy dark matter universe. J. Cosmol. Astropart. Phys. 2020, JCAP01(2020)001 (2020).

    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Ciotti, L. & Binney, J. Two-body relaxation in modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 351, 285–291 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Nipoti, C., Ciotti, L., Binney, J. & Londrillo, P. Dynamical friction in modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 386, 2194–2198 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    D’Onghia, E. & Fox, A. J. The Magellanic Stream: circumnavigating the Galaxy. Annu. Rev. Astron. Astrophys. 54, 363–400 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Lucchini, S. et al. The Magellanic Corona and the formation of the Magellanic Stream. Nature 585, 203–206 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Gardiner, L. T. & Noguchi, M. N-body simulations of the Small Magellanic Cloud and the Magellanic Stream. Mon. Not. R. Astron. Soc. 278, 191–208 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Diaz, J. D. & Bekki, K. The tidal origin of the Magellanic Stream and the possibility of a stellar counterpart. Astrophys. J. 750, 36 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 29.

    Besla, G., Hernquist, L. & Loeb, A. The origin of the microlensing events observed towards the LMC and the stellar counterpart of the Magellanic Stream. Mon. Not. R. Astron. Soc. 428, 2342–2365 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Deason, A. J., Belokurov, V. & Koposov, S. E. To the Galactic virial radius with Hyper Suprime-Cam. Astrophys. J. 852, 118 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 31.

    Zaritsky, D. et al. Discovery of Magellanic stellar debris in the H3 survey. Astrophys. J. 905, L3 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Petersen, M. S. & Peñarrubia, J. Detection of the Milky Way reflex motion due to the Large Magellanic Cloud infall. Nat. Astron. 5, 251–255 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Erkal, D. et al. Detection of the LMC-induced sloshing of the Galactic halo. Preprint at https://arxiv.org/abs/2010.13789 (2020).

  • 34.

    Majewski, S. R., Skrutskie, M. F., Weinberg, M. D. & Ostheimer, J. C. A two micron all sky survey view of the Sagittarius dwarf galaxy. I. Morphology of the Sagittarius core and tidal arms. Astrophys. J. 599, 1082–1115 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Koposov, S. E. et al. Exposing Sgr tidal debris behind the Galactic disc with M giants selected in WISE∩2MASS. Mon. Not. R. Astron. Soc. 446, 3110–3117 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Conroy, C. et al. They might be giants: an efficient color-based selection of red giant stars. Astrophys. J. Lett. 861, L16 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Riello, M. et al. Gaia Early Data Release 3: photometric content and validation. Preprint at https://arxiv.org/abs/2012.01916 (2020).

  • 40.

    Lindegren, L. et al. Gaia Early Data Release 3: parallax bias versus magnitude, colour, and position. Preprint at https://arxiv.org/abs/2012.01742 (2020).

  • 41.

    Conroy, C. et al. Resolving the metallicity distribution of the stellar halo with the H3 survey. Astrophys. J. 887, 237 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 42.

    McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Harris, W. E. A catalog of parameters for globular clusters in the Milky Way. Astron. J. 112, 1487–1488 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    The Astropy Collaboration Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • 45.

    The GRAVITY Collaboration A geometric distance measurement to the Galactic Center black hole with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Drimmel, R. & Poggio, E. On the solar velocity. Res. Not. Am. Astron. Soc. 2, 210 (2018).

    ADS 

    Google Scholar
     

  • 47.

    Bennett, M. & Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. Mon. Not. R. Astron. Soc. 482, 1417–1425 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Price-Whelan, A. M. Gala: a python package for galactic dynamics. J. Open Source Softw. 2, 388 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Belokurov, V. et al. Precession of the Sagittarius Stream. Mon. Not. R. Astron. Soc. 437, 116–131 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Górski, K. M. et al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 51.

    Sesar, B. et al. Machine-learned identification of RR Lyrae stars from sparse, multi-band data: the PS1 sample. Astron. J. 153, 204 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 52.

    Rimoldini, L. et al. Gaia Data Release 2. All-sky classification of high-amplitude pulsating stars. Astron. Astrophys. 625, A97 (2019).

    Article 

    Google Scholar
     

  • 53.

    Clementini, G. et al. Gaia Data Release 2. Specific characterisation and validation of all-sky Cepheids and RR Lyrae stars. Astron. Astrophys. 622, A60 (2019).

    Article 

    Google Scholar
     

  • 54.

    Mateu, C., Holl, B., De Ridder, J. & Rimoldini, L. Empirical completeness assessment of the Gaia DR2, Pan-STARRS 1, and ASAS-SN-II RR Lyrae catalogues. Mon. Not. R. Astron. Soc. 496, 3291–3307 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    Hernquist, L. An analytical model for spherical galaxies and bulges. Astrophys. J. 356, 359–364 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 56.

    Yurin, D. & Springel, V. An iterative method for the construction of N-body galaxy models in collisionless equilibrium. Mon. Not. R. Astron. Soc. 444, 62–79 (2014).

    ADS 
    Article 

    Google Scholar
     



  • Source link