BusinessA stellar stream remnant of a globular cluster below...

A stellar stream remnant of a globular cluster below the metallicity floor – Nature

-


  • 1.

    Frebel, A. & Norris, J. E. Near-field cosmology with extraordinarily steel-poor stars. Ann. Rev. Astron. Astrophys. 53, 631–688 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Yong, D. et al. The most steel-poor stars. III. The metallicity distribution operate and carbon-enhanced steel-poor fraction. Astrophys. J. 762, 27 (2013).

    ADS 

    Google Scholar
     

  • 3.

    Li, H., Tan, Ok. & Zhao, G. A catalog of 10,000 very steel-poor stars from LAMOST DR3. Astrophys. J. Supp. 238, 16 (2018).

    ADS 

    Google Scholar
     

  • 4.

    Aguado, D. S. et al. The Pristine survey – VI. The first three years of medium-decision observe-up spectroscopy of Pristine EMP star candidates. Mon. Not. R. Astron. Soc. 490, 2241–2253 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Beasley, M. A. et al. An outdated, steel-poor globular cluster in Sextans A and the metallicity floor of globular cluster techniques. Mon. Not. R. Astron. Soc. 487, 1986–1993 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Wan, Z. et al. The tidal remnant of an unusually steel-poor globular cluster. Nature 583, 768–770 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Kruijssen, J. M. D. The minimal metallicity of globular clusters and its bodily origin – implications for the galaxy mass-metallicity relation and observations of proto-globular clusters at excessive redshift. Mon. Not. R. Astron. Soc. 486, L20–L25 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Ibata, R. et al. Charting the Galactic acceleration subject. I. A seek for stellar streams with Gaia DR2 and EDR3 with observe-up from ESPaDOnS and UVES. Astrophys. J. 914, 123 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).


    Google Scholar
     

  • 10.

    Starkenburg, E. et al. The Pristine survey – I. Mining the Galaxy for the most steel-poor stars. Mon. Not. R. Astron. Soc. 471, 2587–2604 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Harris, W. E. A catalog of parameters for globular clusters in the Milky Way. Astron. J. 112, 1487 (1996).

    ADS 

    Google Scholar
     

  • 12.

    Willman, B. & Strader, J. ”Galaxy,” outlined. Astron. J. 144, 76 (2012).

    ADS 

    Google Scholar
     

  • 13.

    Leaman, R. Insights into pre-enrichment of star clusters and self-enrichment of dwarf galaxies from their intrinsic metallicity dispersions. Astron. J. 144, 183 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Kirby, E. N. et al. The common stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).

    ADS 

    Google Scholar
     

  • 15.

    Gratton, R. G., Carretta, E. & Bragaglia, A. Multiple populations in globular clusters. Lessons discovered from the Milky Way globular clusters. Astron. Astrophys. R. 20, 50 (2012).

    ADS 

    Google Scholar
     

  • 16.

    Bastian, N. & Lardo, C. Multiple stellar populations in globular clusters. Ann. Rev. Astron. Astrophys. 56, 83–136 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Ji, A. P. et al. The Southern Stellar Stream Spectroscopic Survey (S5): chemical abundances of seven stellar streams. Astron. J. 160, 181 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Roederer, I. U. Are there any stars missing neutron-seize components? Evidence from strontium and barium. Astron. J. 145, 26 (2013).

    ADS 

    Google Scholar
     

  • 19.

    Côté, B. et al. Neutron star mergers may not be the solely supply of r-course of components in the Milky Way. Astrophys. J. 875, 106 (2019).

    ADS 

    Google Scholar
     

  • 20.

    Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete aspect abundances of 9 stars in the r-course of galaxy Reticulum II. Astrophys. J. 830, 93 (2016).

    ADS 

    Google Scholar
     

  • 21.

    Hansen, T. T. et al. An r-course of enhanced star in the dwarf galaxy Tucana III. Astrophys. J. 838, 44 (2017).

    ADS 

    Google Scholar
     

  • 22.

    Roederer, I. U. Primordial r-course of dispersion in steel-poor globular clusters. Astrophys. J. Lett. 732, L17 (2011).

    ADS 

    Google Scholar
     

  • 23.

    Yoon, J. et al. Galactic archeology with the AEGIS survey: the evolution of carbon and iron in the Galactic halo. Astrophys. J. 861, 146 (2018).

    ADS 

    Google Scholar
     

  • 24.

    Norris, J. E. et al. The most steel-poor stars. IV. The two populations with [Fe/H] < −3.0. Astrophys. J. 762, 28 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Youakim, Ok. et al. The Pristine survey – VIII. The metallicity distribution operate of the Milky Way halo right down to the extraordinarily steel-poor regime. Mon. Not. R. Astron. Soc. 492, 4986–5002 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Roederer, I. U. & Gnedin, O. Y. High-resolution optical spectroscopy of stars in the Sylgr stellar stream. Astrophys. J. 883, 84 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Larsen, S. S., Romanowsky, A. J., Brodie, J. P. & Wasserman, A. An extraordinarily steel-poor globular cluster in the Andromeda galaxy. Science 370, 970–973 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Bonaca, A., Hogg, D. W., Price-Whelan, A. M. & Conroy, C. The spur and the hole in GD-1: dynamical proof for a darkish substructure in the Milky Way halo. Astrophys. J. 880, 38 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Ibata, R. A., Lewis, G. F. & Martin, N. F. Feeling the pull: a examine of pure galactic accelerometers. I. Photometry of the delicate stellar stream of the Palomar 5 globular cluster. Astrophys. J. 819, 1 (2016).

    ADS 

    Google Scholar
     

  • 30.

    Erkal, D., Koposov, S. E. & Belokurov, V. A sharper view of Pal 5’s tails: discovery of stream perturbations with a novel non-parametric approach. Mon. Not. R. Astron. Soc. 470, 60–84 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Ma, X. et al. The origin and evolution of the galaxy mass-metallicity relation. Mon. Not. R. Astron. Soc. 456, 2140–2156 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Kielty, C. L. et al. The Pristine survey – XII. Gemini-GRACES chemo-dynamical examine of newly found extraordinarily steel-poor stars in the Galaxy. Mon. Not. R. Astron. Soc. 506, 1438–1461 (2021).

    ADS 

    Google Scholar
     

  • 33.

    Malhan, Ok., Ibata, R. A. & Martin, N. F. Ghostly tributaries to the Milky Way: charting the halo’s stellar streams with the Gaia DR2 catalogue. Mon. Not. R. Astron. Soc. 481, 3442–3455 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Carlberg, R. G. Globular clusters in a cosmological N-physique simulation. Astrophys. J. 861, 69 (2018).

    ADS 

    Google Scholar
     

  • 35.

    Malhan, Ok., Ibata, R. A., Carlberg, R. G., Valluri, M. & Freese, Ok. Butterfly in a cocoon, understanding the origin and morphology of globular cluster streams: the case of GD-1. Astrophys. J. 881, 106 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Martin, N. F. et al. The Pristine survey – XVI. The metallicity of 21 stellar streams round the Milky Way detected with the STREAMFINDER in Gaia EDR3. Mon. Not. R. Astron. Soc submitted (2021).

  • 37.

    Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste stellar evolution code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Maraston, C. Evolutionary inhabitants synthesis: fashions, evaluation of the components and utility to excessive-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Deason, A. J., Belokurov, V. & Evans, N. W. The Milky Way stellar halo out to 40 kpc: squashed, damaged however clean. Mon. Not. R. Astron. Soc. 416, 2903–2915 (2011).

    ADS 

    Google Scholar
     

  • 40.

    Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, color, and place. Astron. Astrophys. 649, A4 (2021).


    Google Scholar
     

  • 41.

    Ibata, R. A., Malhan, Ok., Martin, N. F. & Starkenburg, E. Phlegethon, a close by 75-degree-lengthy retrograde Stellar Stream. Astrophys. J. 865, 85 (2018).

    ADS 

    Google Scholar
     

  • 42.

    Chene, A.-N. et al. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9151 (eds. Navarro, R. et al.) 915147 (SPIE, 2014).

  • 43.

    Pazder, J., Fournier, P., Pawluczyk, R. & van Kooten, M. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9151 (eds. Navarro, R. et al.) 915124 (SPIE, 2014).

  • 44.

    Martioli, E. et al. in Software and Cyberinfrastructure for Astronomy II Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8451 (eds. Radziwill, N. M. & Chiozzi, G.) 84512B (SPIE, 2012).

  • 45.

    Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of mud infrared emission to be used in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).

    ADS 

    Google Scholar
     

  • 46.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS 

    Google Scholar
     

  • 47.

    González Hernández, J. I. & Bonifacio, P. A new implementation of the infrared flux methodology utilizing the 2MASS catalogue. Astron. Astrophys. 497, 497–509 (2009).

    ADS 

    Google Scholar
     

  • 48.

    Mucciarelli, A., Bellazzini, M. & Massari, D. Exploiting the Gaia EDR3 photometry to derive stellar temperatures. Astron. Astrophys. (in the press).

  • 49.

    Mashonkina, L., Jablonka, P., Pakhomov, Y., Sitnova, T. & North, P. The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance evaluation. I. Homogeneous set of atmospheric parameters. Astron. Astrophys. 604, A129 (2017).

    ADS 

    Google Scholar
     

  • 50.

    Karovicova, I. et al. Fundamental stellar parameters of benchmark stars from CHARA interferometry. I. Metal-poor stars. Astron. Astrophys. 640, A25 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Giribaldi, R. E., da Silva, A. R., Smiljanic, R. & Cornejo Espinoza, D. TITANS steel-poor reference stars. I. Accurate efficient temperatures and floor gravities for dwarfs and subgiants from 3D non-LTE H α profiles and Gaia parallaxes. Astron. Astrophys. 650, A194 (2021).

    CAS 

    Google Scholar
     

  • 52.

    Kurucz, R. L. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. Mem. Soc. Astron. Ital. Suppl. 8, 14 (2005).

    ADS 

    Google Scholar
     

  • 53.

    Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. of Texas at Austin (1973).

  • 54.

    Sobeck, J. S. et al. The abundances of neutron-seize species in the very steel-poor globular cluster M15: a uniform evaluation of purple big department and purple horizontal department stars. Astron. J. 141, 175 (2011).

    ADS 

    Google Scholar
     

  • 55.

    Placco, V. M. et al. Linemake: an atomic and molecular line checklist generator. Res. Notes AAS 5, 92 (2021).

    ADS 

    Google Scholar
     

  • 56.

    http://inspect-stars.net.

  • 57.

    http://nlte.mpia.de.

  • 58.

    Lind, Ok., Bergemann, M. & Asplund, M. Non-LTE line formation of Fe in late-kind stars – II. 1D spectroscopic stellar parameters. Mon. Not. R. Astron. Soc. 427, 50–60 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Bergemann, M. & Cescutti, G. Chromium: NLTE abundances in steel-poor stars and nucleosynthesis in the Galaxy (2010).

  • 60.

    Bergemann, M., Lind, Ok., Collet, R., Magic, Z. & Asplund, M. Non-LTE line formation of Fe in late-kind stars – I. Standard stars with 1D and <3D> mannequin atmospheres. Mon. Not. R. Astron. Soc. 427, 27–49 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Mashonkina, L., Korn, A. J. & Przybilla, N. A non-LTE examine of impartial and singly-ionized calcium in late-kind stars. Astron. Astrophys. 461, 261–275 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Tody, D. in Astronomical Data Analysis Software and Systems II Astronomical Society of the Pacific Conference Series, Vol. 52 (eds. Hanisch, R. J. et al.) 173 (1993).

  • 64.

    Aguado, D. S., Allende Prieto, C., González Hernández, J. I., Rebolo, R. & Caffau, E. New extremely steel-poor stars from SDSS: observe-up GTC medium-decision spectroscopy. Astron. Astrophys. 604, A9 (2017).

    ADS 

    Google Scholar
     

  • 65.

    Aguado, D. S., González Hernández, J. I., Allende Prieto, C. & Rebolo, R. J0815+4729: a chemically primitive dwarf star in the galactic halo noticed with Gran Telescopio Canarias. Astrophys. J. Lett. 852, L20 (2018).

    ADS 

    Google Scholar
     

  • 66.

    Allende Prieto, C. et al. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution. Astron. Astrophys. 568, A7 (2014).


    Google Scholar
     

  • 67.

    Aguado, D. S., González Hernández, J. I., Allende Prieto, C. & Rebolo, R. WHT observe-up observations of extraordinarily steel-poor stars recognized from SDSS and LAMOST. Astron. Astrophys. 605, A40 (2017).

    ADS 

    Google Scholar
     

  • 68.

    Koesterke, L., Allende Prieto, C. & Lambert, D. L. Center-to-limb variation of photo voltaic three-dimensional hydrodynamical simulations. Astrophys. J. 680, 764–773 (2008).

    ADS 

    Google Scholar
     

  • 69.

    Boender, C. G. E., Rinnoy Kan, A. H. G., Timmer, G. T. & Stougie, L. A stochastic methodology for international optimization. Math. Program. 22, 125 (1982).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 70.

    Wenger, M. et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. Ser. 143, 9–22 (2000).

    ADS 

    Google Scholar
     

  • 71.

    Ochsenbein, F., Bauer, P. & Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 143, 23–32 (2000).

    ADS 

    Google Scholar
     

  • 72.

    http://www.inasan.rssi.ru/~lima/pristine.



  • Source link

    Latest news

    A Problem With Bitcoin’s Lightning Network Liquidity And Ideas To Address It

    This is an opinion editorial by Shinobi, a self-taught educator in the Bitcoin space and tech-oriented Bitcoin podcast...

    DuckDuckGo Isn’t as Private as You Think

    After another week of dismally tragic news and moral failures by the powerful, it's good to know that...

    ‘Flash Droughts’ Are the Midwest’s Next Big Climate Threat

    Flash droughts are also a global problem, with Brazil, India, and multiple countries in Africa facing the worst...

    Sequoia is the latest VC firm telling you to take the downturn seriously – TechCrunch

    Sequoia takes things seriously. The storied venture firm is known to react to macroeconomic events with grand memos...

    Must read

    You might also likeRELATED
    Recommended to you