A multi-scale map of cell structure fusing protein images and interactions – Nature

  • 1.

    Harold, F. M. Molecules into cells: specifying spatial structure. Microbiol. Mol. Biol. Rev. 69, 544–564 (2005).

    CAS  Article  Google Scholar 

  • 2.

    Mori, H. & Cardiff, R. D. Methods of immunohistochemistry and immunofluorescence: changing invisible to seen. In The Tumor Microenvironment, Methods in Molecular Biology Vol. 1458 (eds Ursini-Siegel, J. & Beauchemin, N.) 1–12 (Humana Press, 2016).

  • 3.

    Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and perform. Nature 537, 347–355 (2016).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  Google Scholar 

  • 5.

    Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and illness networks. Nature 545, 505–509 (2017).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of organic techniques. Cell Syst. 12, 622–635 (2021).

    CAS  Article  Google Scholar 

  • 7.

    Ouyang, W. et al. Analysis of the Human Protein Atlas Image Classification competitors. Nat. Methods 16, 1254–1261 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Grover, A. & Leskovec, J. node2vec: scalable function studying for networks. In KDD ’16: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (2016).

  • 9.

    Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT Press, 2016).

  • 10.

    Fortunato, S. & Hric, D. Community detection in networks: a person information. Phys. Rep. 659, 1–44 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  • 11.

    Go, C. D. et al. A proximity-dependent biotinylation map of a human cell. Nature 595, 120–124 (2021)

    ADS  CAS  Article  Google Scholar 

  • 12.

    Meyers, R. M. et al. Computational correction of copy quantity impact improves specificity of CRISPR–Cas9 essentiality screens in most cancers cells. Nat. Genet. 49, 1779–1784 (2017).

    CAS  Article  Google Scholar 

  • 13.

    Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes remoted beneath physiological situations. Mol. Cell. Biol. 26, 5528–5543 (2006).

    CAS  Article  Google Scholar 

  • 14.

    Charenton, C., Wilkinson, M. E. & Nagai, Ok. Mechanism of 5′ splice website switch for human spliceosome activation. Science 364, 362–367 (2019).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Yoshikatsu, Y. et al. NVL2, a nucleolar AAA-ATPase, is related to the nuclear exosome and is concerned in pre-rRNA processing. Biochem. Biophys. Res. Commun. 464, 780–786 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Chaudhuri, S. et al. Human ribosomal protein L13a is dispensable for canonical ribosome perform however indispensable for environment friendly rRNA methylation. RNA 13, 2224–2237 (2007).

    CAS  Article  Google Scholar 

  • 17.

    Tafforeau, L. et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing elements. Mol. Cell 51, 539–551 (2013).

    CAS  Article  Google Scholar 

  • 18.

    Eppens, N. A. et al. Deletions within the S1 area of Rrp5p trigger processing at a novel website in ITS1 of yeast pre-rRNA that relies on Rex4p. Nucleic Acids Res. 30, 4222–4231 (2002).

    CAS  Article  Google Scholar 

  • 19.

    De Silva, D., Tu, Y.-T., Amunts, A., Fontanesi, F. & Barrientos, A. Mitochondrial ribosome meeting in well being and illness. Cell Cycle 14, 2226–2250 (2015).

    Article  Google Scholar 

  • 20.

    Blencowe, B. J. et al. The SRm160/300 splicing coactivator subunits. RNA 6, 111–120 (2000).

    CAS  Article  Google Scholar 

  • 21.

    The UniProt Consortium. UniProt: a worldwide hub of protein information. Nucleic Acids Res. 47, D506–D515 (2019).

    Article  Google Scholar 

  • 22.

    Pavan Kumar, P. et al. Phosphorylation of SATB1, a world gene regulator, acts as a molecular change regulating its transcriptional exercise in vivo. Mol. Cell 22, 231–243 (2006).

    CAS  Article  Google Scholar 

  • 23.

    Pomeranz Krummel, D. A., Oubridge, C., Leung, A. Ok. W., Li, J. & Nagai, Ok. Crystal structure of human spliceosomal U1 snRNP at 5.5 A decision. Nature 458, 475–480 (2009).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Fleckner, J., Zhang, M., Valcárcel, J. & Green, M. R. U2AF65 recruits a novel human DEAD field protein required for the U2 snRNP-branchpoint interplay. Genes Dev. 11, 1864–1872 (1997).

    CAS  Article  Google Scholar 

  • 25.

    Van Nostrand, E. L. et al. A massive-scale binding and useful map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    ADS  Article  Google Scholar 

  • 26.

    Van Nostrand, E. L. et al. Robust, value-efficient profiling of RNA binding protein targets with single-finish enhanced crosslinking and immunoprecipitation (seCLIP). In mRNA Processing, Methods in Molecular Biology Vol. 1648 (ed. Shi, Y.) 177–200 (Humana Press, 2017).

  • 27.

    Stryer, L. Fluorescence power switch as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    CAS  Article  Google Scholar 

  • 28.

    Wang, T. et al. Gene essentiality profiling reveals gene networks and artificial deadly interactions with oncogenic Ras. Cell 168, 890–903 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific reworking of the human interactome. Cell 184, 3022–3040 (2021).

    CAS  Article  Google Scholar 

  • 30.

    Williams, S. G. & Hall, Ok. B. Human U2B″ protein binding to snRNA stemloops. Biophys. Chem. 159, 82–89 (2011).

    CAS  Article  Google Scholar 

  • 31.

    Huang, G., Liu, Z., van der Maaten, L. & Weinberger, Ok. Q. Densely linked convolutional networks. Preprint at https://arxiv.org/abs/1608.06993 (2016).

  • 32.

    Nusinow, D. P. et al. Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell 180, 387–402 (2020).

    CAS  Article  Google Scholar 

  • Source link